Skip to main content

Advertisement

Log in

Hydrogen Production Through Steam Reforming of Toluene Over Ni Supported on MgAl Mixed Oxides Derived from Hydrotalcite-Like Compounds

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

This work studied the performance of mixed oxides derived from hydrotalcite-like compounds with different Al/(Ni + Mg + Al) molar ratios for the steam reforming of toluene. All catalysts deactivated, except for Ni/MgO. The amount of carbon formed on the catalysts depended on the Ni particle size and density of acid sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Matias JCO, Devezas TC (2007) Appl Energy 84:763

    Article  Google Scholar 

  2. Corella J, Orio A, Aznar P (1998) Ind Eng Chem Res 37:4617

    Article  CAS  Google Scholar 

  3. Wang X, Gorte RJ (2002) App Catal A 224:209

    Article  CAS  Google Scholar 

  4. de Castro TP, Peguin RPS, Neto RCR, Borges LEP, Noronha FB (2016) Top Catal 59:292

    Article  CAS  Google Scholar 

  5. de Castro TP, Silveira EB, Rabelo-Neto RC, Borges LEP, Noronha FB (2018) Catal Today 299:251

    Article  CAS  Google Scholar 

  6. Coll R, Salvadó J, Farriol X, Montané D (2001) Fuel Process Technol 74:19

    Article  CAS  Google Scholar 

  7. Srinakruang J, Sato K, Vitidsant T, Fujimoto K (2005) Catal Commun 6:437

    Article  CAS  Google Scholar 

  8. Zhang R, Wang Y, Brown RC (2007) Energy Convers Manage 48:68

    Article  CAS  Google Scholar 

  9. Swierczynski D, Libs S, Courson C, Kiennemann A (2007) Appl Catal B 74:211

    Article  CAS  Google Scholar 

  10. Swierczynski D, Courson C, Kiennemann A (2008) Chem Eng Process 47:508

    Article  CAS  Google Scholar 

  11. Bona S, Guillén P, Alcalde JG, García L, Bilbao R (2008) Chem Eng J 137:587

    Article  CAS  Google Scholar 

  12. Lamarcz A, Krzto´n A, Musi A, Da Costa P (2009) Catal Lett 128:40

    Article  CAS  Google Scholar 

  13. Virginie M, Courson C, Niznansky D, Chaoui N, Kiennemann A (2010) Appl Catal B 101:90

    Article  CAS  Google Scholar 

  14. Ashok J, Kawi S (2013) Int J Hydrog Energy 38:13938

    Article  CAS  Google Scholar 

  15. Silveira EB, Rabelo-Neto RC, Noronha FB (2017) Catal Today 289:289

    Article  CAS  Google Scholar 

  16. Rostrup-Nielsen JR (1984) J Catal 85:31

    Article  CAS  Google Scholar 

  17. Trimm DL (1997) Catal Today 37:233

    Article  CAS  Google Scholar 

  18. Mukai D, Murai Y, Higo T, Tochiya S, Hashimoto T, Sugiura Y, Sekine Y (2013) Appl Catal A 466:190

    Article  CAS  Google Scholar 

  19. Mukai D, Tochiya S, Murai Y, Imori M, Hashimoto T, Sugiura Y, Sekine Y (2013) Appl Catal A 453:60

    Article  CAS  Google Scholar 

  20. Sekine Y, Mukai D, Murai Y, Tochiya S, Izutsu Y, Seriguchi K, Hosomura N, Arai H, Kikuchi E, Sugiura Y (2013) Appl Catal A 451:160

    Article  CAS  Google Scholar 

  21. Takise K, Higo T, Mukai D, Ogo S, Sugiura Y (2016) Catal Today 265:111

    Article  CAS  Google Scholar 

  22. Soongprasit K, Aht-Ong D, Sricharoeenchaikul V, Atong D (2012) Curr Appl Phys 12:580

    Article  Google Scholar 

  23. Oemar U, Ang ML, Hee WF, Hidajat K, Kawi S (2014) Appl Catal B 148:231

    Article  CAS  Google Scholar 

  24. Oemar U, Ang PS, Hidajat K, Kawi S (2013) Int J Hydrog Energy 38:5525

    Article  CAS  Google Scholar 

  25. Zhang Y, Hongwei C, Xionggang L, Weizhong D, Guozh Z (2009) Rare Met 28:582

    Article  CAS  Google Scholar 

  26. Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM. (2014) Fuel Process Technol 121:76

    Article  CAS  Google Scholar 

  27. Takehira K, Shishido T, Wang P, Kosaka T, Takaki K (2004) J Catal 221:43

    Article  CAS  Google Scholar 

  28. Polato CMS, Henriques CA, Neto AA, Monteiro JLF (2005) J Mol Catal A 241:184

    Article  CAS  Google Scholar 

  29. Li D, Wang L, Koike M, Nakagawa Y, Tomishige K (2011) Appl Catal B 102:528

    Article  CAS  Google Scholar 

  30. Cesar DV, Baldanza MAS, Henriques CA, Pompeo F, Santori G, Munera J, Lombardo E, Schmal M, Cornaglia L, Nichio N (2013) Int J Hydrog Energy 38:5616

    Article  CAS  Google Scholar 

  31. Li M, Wang X, Li S, Wang S, Ma X (2010) Int J Hydrog Energy 35:6699

    Article  CAS  Google Scholar 

  32. Vizcaìno AJ, Lindo M, Carrero A, Calles JA (2012) Int J Hydrog Energy 37:1985

    Article  CAS  Google Scholar 

  33. Liu S, Chen D, Zhang K, Li J, Zhao N (2008) Int J Hydrog Energy 33:3736

    Article  CAS  Google Scholar 

  34. Romero A, Jobbágy M, Laborde M, Baronetti G, Amadeo N (2010) Catal Today 149:407

    Article  CAS  Google Scholar 

  35. Cruz IO, Ribeiro NFP, Aranda DAG, Souza MMVM. (2008) Catal Commun 9:2606

    Article  CAS  Google Scholar 

  36. Guil-López R, Navarro RM, Pena MA, Fierro JLG (2011) Int J Hydrog Energy 36:1512

    Article  CAS  Google Scholar 

  37. Duprez D, Miloudi A, Delahay G, Maurel R (1986) J Catal 101:56

    Article  CAS  Google Scholar 

  38. Viinikainen T, Rönkkönen H, Bradshaw H, Stephenson H, Airaksinen S, Reinikainen M, Simell P, Krause O (2009) Appl Catal A 362:169

    Article  CAS  Google Scholar 

  39. Yung MM, Kuhn JN (2010) Langmuir 26:16589

    Article  CAS  PubMed  Google Scholar 

  40. Zhao Z, Lakshminarayanan N, Swartz SL, Arkenberg GB, Felix LG, Slimane RB, Choi CC, Ozkan US (2015) Appl Catal A 489:42

    Article  CAS  Google Scholar 

  41. Quitete CPB, Bittencourt RCP, Souza MMVM (2014) Appl Catal A 48:234

    Article  CAS  Google Scholar 

  42. Guichard B, Roy-Auberger M, Devers E, Rebours B, Quoineaud AA, Digne M (2009) Appl Catal A 367:1

    Article  CAS  Google Scholar 

  43. Ferrari AC, Robertson J (2000) Phys Rev B 61:14095

    Article  CAS  Google Scholar 

  44. Belin T, Epron F (2005) Mater Sci Eng B 119:105

    Article  CAS  Google Scholar 

  45. Srinakruang J, Sato K, Vitidsant T, Fujimoto K (2005) Fuel 85:2419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the scholarship received from CAPES and FAPERJ. The authors are also grateful for support from The National Council for Scientific and Technological Development - CNPq (407144/2013-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Noronha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, O.C.V., Silveira, E.B., Rabelo-Neto, R.C. et al. Hydrogen Production Through Steam Reforming of Toluene Over Ni Supported on MgAl Mixed Oxides Derived from Hydrotalcite-Like Compounds. Catal Lett 148, 1622–1633 (2018). https://doi.org/10.1007/s10562-018-2390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2390-8

Keywords

Navigation