Catalysis Letters

, Volume 148, Issue 6, pp 1634–1642 | Cite as

Oxidative Dehydrogenation of Ethane with CO2 over Au/CeO2 Nanorod Catalysts

  • Tianqi Lei
  • Changxi Miao
  • Weiming Hua
  • Yinghong Yue
  • Zi Gao
Article
  • 31 Downloads

Abstract

Dehydrogenation of ethane to ethylene in the presence or absence of CO2 over Au catalysts supported on nanorod and nanoparticle ceria was investigated. The nanorod CeO2 supported Au exhibits higher activity as well as higher stability, with an ethane conversion of 17% and ethylene selectivity of 98% without any observable trend of deactivation in 6 h. The surface oxygen reducibility of the catalysts plays an important role in the dehydrogenation which can be greatly enhanced by the addition of Au. The promoting effect of CO2 on stability is caused by reducing coke by the Boudouard reaction and supplementing the reducible oxygen specie of CeO2 surface sustainably.

Graphical Abstract

Keywords

Ethane dehydrogenation Au catalyst CeO2 Nanorod CO2 

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFB0602204), the National Natural Science Foundation of China (91645201) and the Science & Technology Commission of Shanghai Municipality (13DZ2275200).

References

  1. 1.
    Cavani F, Trifirò F (1995) Catal Today 24:307CrossRefGoogle Scholar
  2. 2.
    Gärtner CA, van Veen AC, Lercher JA (2013) ChemCatChem 5:3196CrossRefGoogle Scholar
  3. 3.
    Ren T, Patel M, Blok K (2006) Energy 31:425CrossRefGoogle Scholar
  4. 4.
    McFarland E (2012) Science 338:340CrossRefGoogle Scholar
  5. 5.
    Sattler JJHB, Ruíz-Martínez J, Santillan-Jimenez E, Weckhuysen BM (2014) Chem Rev 114:10613CrossRefGoogle Scholar
  6. 6.
    Wang SB, Murata K, Hayakawa T, Hamakawa S, Suzuki K (2000) Appl Catal A 196:1CrossRefGoogle Scholar
  7. 7.
    Deng S, Li H, Li S, Zhang Y (2007) J Mol Catal A 268:169CrossRefGoogle Scholar
  8. 8.
    Zheng B, Hua WM, Yue YH, Gao Z (2005) J Catal 232:143CrossRefGoogle Scholar
  9. 9.
    Shen ZH, Liu J, Xu HL, Yue YH, Hua WM, Shen W (2009) Appl Catal A 356:148CrossRefGoogle Scholar
  10. 10.
    Koirala R, Buechel R, Krumeich F, Pratsinis SE, Baiker A (2015) ACS Catal 5:690CrossRefGoogle Scholar
  11. 11.
    Shishido T, Shimamura K, Teramura K, Tanaka T (2012) Catal Today 185:151CrossRefGoogle Scholar
  12. 12.
    Liu LC, Li HQ, Zhang Y (2006) Catal Today 115:235CrossRefGoogle Scholar
  13. 13.
    Tóth A, Halasi G, Solymosi F (2015) J Catal 330:1CrossRefGoogle Scholar
  14. 14.
    Tóth A, Halasi G, Bánsági T, Solymosi F (2016) J Catal 337:57CrossRefGoogle Scholar
  15. 15.
    Carrettin S, Concepción P, Corma A, Nieto JML, Puntes VF (2004) Angew Chew Int Ed 43:2538CrossRefGoogle Scholar
  16. 16.
    Tang Z, Edwards JK, Bartley JK, Taylor SH, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2007) J Catal 249:208CrossRefGoogle Scholar
  17. 17.
    Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH (2005) J Phys Chem B 109:24380CrossRefGoogle Scholar
  18. 18.
    Zhou K, Wang X, Xun X, Peng Q, Li Y (2005) J Catal 229:206CrossRefGoogle Scholar
  19. 19.
    Huang XS, Sun H, Wang LC, Liu YM, Fan KN, Cao Y (2009) Appl Catal B 90:224CrossRefGoogle Scholar
  20. 20.
    Zhang L, Wu Z, Nelson NC, Sadow AD, Slowing II, Overbury SH (2015) ACS Catal 5:6426CrossRefGoogle Scholar
  21. 21.
    Fan HX, Feng J, Li WY, Li XH, Wiltowski T, Ge QF (2018) Appl Surf Sci 427:973CrossRefGoogle Scholar
  22. 22.
    Ikenaga NO, Tsuruda T, Senma K, Yamaguchi T, Sakurai Y, Suzuki T (2000) Ind Eng Chem Res 39:1228CrossRefGoogle Scholar
  23. 23.
    Rao KN, Reddy BM, Abhishek B, Seo YH, Jiang N, Park SE (2009) Appl Catal B 91:649CrossRefGoogle Scholar
  24. 24.
    Rao KN, Reddy BM, Park SE (2010) Appl Catal B 100:472CrossRefGoogle Scholar
  25. 25.
    Wang N, Qian WZ, Chu W, Wei F (2016) Catal Sci Technol 6:3594CrossRefGoogle Scholar
  26. 26.
    Fu Q, Weber A, Flyzani-Stephanopoulos M (2001) Catal Lett 77:87CrossRefGoogle Scholar
  27. 27.
    Scirè S, Minicò S, Crisafulli C, Satriano C, Pistone A (2003) Appl Catal B 40:43CrossRefGoogle Scholar
  28. 28.
    Fu Q, Saltsburg H, Flyzani-Stephanopoulos M (2003) Science 301:935CrossRefGoogle Scholar
  29. 29.
    Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) J Catal 188:176CrossRefGoogle Scholar
  30. 30.
    Fan L, Ichikuni N, Shimazu S, Uematsu T (2003) Appl Catal A 246:87CrossRefGoogle Scholar
  31. 31.
    Li SN, Zhu HQ, Qin ZF, Wang GF, Zhang YG, Wu ZW, Li ZK, Chen G, Dong WW, Wu ZH (2014) Appl Catal B 144:498CrossRefGoogle Scholar
  32. 32.
    Larachi F, Pierre J, Adnot A, Bernis A (2002) Appl Surf Sci 195:236CrossRefGoogle Scholar
  33. 33.
    Nelson AE, Schulz KH (2003) Appl Surf Sci 210:206CrossRefGoogle Scholar
  34. 34.
    Venezia AM, Pantaleo G, Longo A, Carlo GD, Casaletto MP, Liotta FL, Deganello G (2005) J Phys Chem B 109:2821CrossRefGoogle Scholar
  35. 35.
    Liu X, Zhou K, Wang L, Wang B, Li Y (2009) J Am Chem Soc 131:3140CrossRefGoogle Scholar
  36. 36.
    Campbell CT, Pedern CHF (2005) Science 309:713CrossRefGoogle Scholar
  37. 37.
    Xu BJ, Zheng B, Hua WM, Yue YH, Gao Z (2006) J Catal 239:470CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tianqi Lei
    • 1
  • Changxi Miao
    • 2
  • Weiming Hua
    • 1
  • Yinghong Yue
    • 1
  • Zi Gao
    • 1
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Research Institute of Petrochemical TechnologyShanghaiPeople’s Republic of China

Personalised recommendations