Catalysis Letters

, Volume 148, Issue 6, pp 1750–1757 | Cite as

A Mild Procedure for Enone Preparation Catalysed by Bovine Serum Albumin in a Green and Easily Available Medium

  • Sebastián M. Ardanaz
  • Ana J. Velez Rueda
  • Gustavo Parisi
  • Adolfo M. Iribarren
  • Luis E. Iglesias


A simple and mild procedure to obtain α,β-unsaturated ketones from acetone and a set of benzaldehydes is described. The approach applies bovine serum albumin (BSA) catalysis and water or ethanol, this mild reaction medium contrasting with the strong reaction conditions of the classic aldol condensation. Except for the assayed nitrobenzaldehydes, high enone yields (88–97%) were attained. In addition to its mildness, further advantages of this procedure are the use of a green catalyst exhibiting an efficient reuse and the use of eco-friendly and cheap solvents. In order to gain a deeper understanding of the involved catalytic mechanism, computational experiments on BSA structural analysis and molecular docking were carried out.

Graphical Abstract


Bovine serum albumin Catalytic promiscuity Cross aldol condensation Enones 



The authors acknowledge UNQ and ANPCyT, Argentina (PICT 2013-0232, LEI) for financial support. GP, AMI and LEI are members of the Scientific Research Career of CONICET (Argentina); SMI is research fellow of CONICET and AJVL, research fellow of ANPCyT.

Supplementary material

10562_2018_2386_MOESM1_ESM.pdf (187 kb)
Supplementary material 1 (PDF 186 KB)


  1. 1.
    Bukhari SNA, Jasamai M, Jantan I (2012) Mini-Rev Med Chem 12:1394PubMedGoogle Scholar
  2. 2.
    Matos MJ, Vázquez Rodríguez S, Uriarte E, Santana L (2015) Expert Opin Ther Pat 25:351CrossRefPubMedGoogle Scholar
  3. 3.
    Kreher UP, Rosamilia AE, Raston CL, Scott JL, Strauss CR (2003) Org Lett 5:3107CrossRefPubMedGoogle Scholar
  4. 4.
    Motiur Rahman AFM, Ali R, Jahngh Y, Kadi AA (2012) Molecules 17:571CrossRefGoogle Scholar
  5. 5.
    Rayar A, Sylla-Iyarreta Veitía M, Ferroud C (2015) Springerplus 4:221CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clapés P (2016) Enzymatic C–C bond formation. In: Goswami A, Stewart JD (eds) Organic synthesis using biocatalysis. Elsevier, Amsterdam, pp 299–328Google Scholar
  7. 7.
    Svedendahl Humble M, Berglund P (2011) Eur J Org Chem. CrossRefGoogle Scholar
  8. 8.
    Miao Y, Rahimi M, Geertsema EM, Poelarends GJ (2015) Curr Opin Chem Biol 25:115CrossRefPubMedGoogle Scholar
  9. 9.
    Busto E, Gotor-Fernández V, Gotor V (2010) Chem Soc Rev 39:4504CrossRefPubMedGoogle Scholar
  10. 10.
    Guan Z, Li LY, He YH (2015) RCS Adv 5:16801Google Scholar
  11. 11.
    López-Iglesias M, Gotor-Fernández V (2015) Chem Rec 15:743CrossRefPubMedGoogle Scholar
  12. 12.
    González-Martínez D, Gotor V, Gotor-Fernández V (2016) Eur J Org Chem. CrossRefGoogle Scholar
  13. 13.
    Acharya C, Mandal M, Dutta T, Ghosh AK, Jaisankar P (2016) Tetrahedron Lett 57:4382CrossRefGoogle Scholar
  14. 14.
    Zandvoort E, Geertsema EM, Quax WJ, Poelarends GJ (2012) ChemBioChem 13:1274CrossRefPubMedGoogle Scholar
  15. 15.
    Chen X, Liu BK, Kang H, Lin XF (2011) J Mol Catal B:Enzym 68:71CrossRefGoogle Scholar
  16. 16.
    Reetz MT, Mondière R, Carballeira JD (2007) Tetrahedron Lett 48:1679CrossRefGoogle Scholar
  17. 17.
    Albanese DCM, Gaggero N (2015) RCS Adv 5:10588Google Scholar
  18. 18.
    Benedetti F, Berti F, Bidoggia S (2011) Org Biomol Chem 9:4417CrossRefPubMedGoogle Scholar
  19. 19.
    Sharma N, Sharma UK, Kumar R, Katoch N, Kumar R, Sinha AK (2011) Adv Synth Catal 353:871CrossRefGoogle Scholar
  20. 20.
    Le Guilloux V, Schmidtke P, Tufféry P (2009) BMC Bioinform 10:168. CrossRefGoogle Scholar
  21. 21.
    Kieseritzky G, Knapp EW (2008) Proteins 71:1335CrossRefPubMedGoogle Scholar
  22. 22.
    Trott O, Olson AJ (2010) J Comput Chem 31:455PubMedPubMedCentralGoogle Scholar
  23. 23.
    Piovesan D, Minervini G, Tosatto SC (2016) Nucleic Acids Res 44:W367CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bommarius AS, Riebel BR (2004) Biocatalysis, fundamentals and applications. Wiley-VCH, Mannheim, pp 345–346Google Scholar
  25. 25.
    Busto E, Gotor-Fernández V, Gotor V (2011) Org Process Res Dev 15:236CrossRefGoogle Scholar
  26. 26.
    Li LY, Zeng QQ, Yang YX, Hu HF, Xu M, Guan Z, He YH (2015) J Mol Catal B:Enzym 122:1CrossRefGoogle Scholar
  27. 27.
    Dalal KS, Tayade YA, Wagh YB, Trivedi YR, Dalal DS, Chaudhari BL (2016) RSC Adv 6:14868CrossRefGoogle Scholar
  28. 28.
    Simon MO, Li CJ (2012) Chem Soc Rev 41:1415CrossRefPubMedGoogle Scholar
  29. 29.
    Gröger H, Hummel W (2014) Curr Opin Chem Biol 19:171CrossRefPubMedGoogle Scholar
  30. 30.
    Klein G, Reymond JL (1998) Bioorg Med Chem Lett 8:1113CrossRefPubMedGoogle Scholar
  31. 31.
    Boucher G, Robin S, Fargeas V, Dintinger T, Mathé-Allainmat M, Lebreton J, Tellier C (2005) ChemBioChem 6:807CrossRefPubMedGoogle Scholar
  32. 32.
    Hollfelder F, Kirby AJ, Tawfik AS, Kikuchi K, Hilvert D (2000) J Am Chem Soc 122:1022CrossRefGoogle Scholar
  33. 33.
    Schmidtke P, Le Guilloux V, Maupetit J, Tufféry P (2010) Nucleic Acid Res 38:W582CrossRefPubMedGoogle Scholar
  34. 34.
    Gutteridge A, Thornton JM (2005) Trends Biochem Sci 30:622CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sebastián M. Ardanaz
    • 1
  • Ana J. Velez Rueda
    • 2
  • Gustavo Parisi
    • 2
  • Adolfo M. Iribarren
    • 1
  • Luis E. Iglesias
    • 1
  1. 1.Laboratory of Biocatalysis and Biotransformation, Department of Science and TechnologyNational University of QuilmesBernalArgentina
  2. 2.Structural Bioinformatics Group, Department of Science and TechnologyNational University of QuilmesBernalArgentina

Personalised recommendations