Catalysis Letters

, Volume 148, Issue 6, pp 1659–1675 | Cite as

Investigation into Consecutive Reactions of Ethane and Ethene Under the OCM Reaction Conditions over MnxOy–Na2WO4/SiO2 Catalyst

  • Samira Parishan
  • Ewa Nowicka
  • Vinzenz Fleischer
  • Christian Schulz
  • Maria G. Colmenares
  • Frank Rosowski
  • Reinhard Schomäcker
Article
  • 50 Downloads

Abstract

The reaction mechanism of ethane and ethene oxidation was studied under the OCM reaction conditions over MnxOy–Na2WO4/SiO2. The consecutive reaction of C2 components is observed to be the main route to the formation of COX under the applied reaction conditions here. The homogeneous or heterogeneous nature of these unselective reactions was investigated in more details. For this purpose, the temperature programmed surface reaction (TPSR) technique was applied. The results of these experiments indicate that the consecutive reaction of ethane is mainly occurring in the gas phase of the reactor. This point was confirmed when the activation energy of ethane both, in the presence of the catalyst and silicon carbide, as the inert surface, was shown to be at the same level. The concentration profile of the effluent obtained by simulating the reaction of C2 components using the Dooley mechanism in ChemkinPro was also in good agreement with this proposal. The reason for the low influence of the catalyst on conversion of ethane was ascribed to the film diffusion limitation that is occurring under the OCM reaction conditions applied in these studies. Finally, a set of experiments were performed with 13CH4 to study the effect of methane on the consecutive reaction of ethane in the OCM reactor.

Graphical Abstract

Keywords

Oxidative coupling of methane MnxOy–Na2WO4/SiO2 Thermal dehydrogenation of ethane Oxidative coupling of labelled methane Stationary co-feeding experiments 

Notes

Acknowledgements

Financial support by the DFG (Grant No. EXC 314) (UniCat Cluster of Excellence) is gratefully acknowledged.

Supplementary material

10562_2018_2384_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1405 KB)

References

  1. 1.
    Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century. Catal Today 63:165–174.  https://doi.org/10.1016/S0920-5861(00)00456-9 CrossRefGoogle Scholar
  2. 2.
    Malekzadeh A, Abedini M, Khodadadi A (2002) Critical influence of Mn on low-temperature catalytic activity of Mn/Na2WO4/SiO2 catalyst for oxidative coupling of methane. Catal Lett 84:45–51CrossRefGoogle Scholar
  3. 3.
    Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker R (2012) Mn–Na2WO4/SiO2 as catalyst for the oxidative coupling of methane. What is really known? Appl Catal A.  https://doi.org/10.1016/j.apcata.2012.02.046 Google Scholar
  4. 4.
    Lunsford JH (1990) Catalytic conversion of methane to heigher hydrocarbons. Catal Today 6:235–259.  https://doi.org/10.1016/0920-5861(90)85004-8
  5. 5.
    Sinev MY, Fattakhova ZT, Lomonosov VI, Gordienko YA (2009) Kinetics of oxidative coupling of methane: bridging the gap between comprehension and description. J Nat Gas Chem 18:273–287.  https://doi.org/10.1016/S1003-9953(08)60128-0 CrossRefGoogle Scholar
  6. 6.
    Kondratenko EV, Peppel T, Seeburg D, Kondratenko V, Kalevaru N, Martin A, Wohlrab S (2017) Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal Sci Technol 7:366–381.  https://doi.org/10.1039/C6CY01879C CrossRefGoogle Scholar
  7. 7.
    Schwarz H (2011) Chemistry with methane: concepts rather than recipes. Angew Chemie 50:10096–10115.  https://doi.org/10.1002/anie.201006424 CrossRefGoogle Scholar
  8. 8.
    Lunsford JH (1995) The catalytic oxidative coupling of methane. Angew Chemie 34:970–980.  https://doi.org/10.1002/anie.199509701 CrossRefGoogle Scholar
  9. 9.
    Gesser HD, Hunter NR (1998) A review of C-1 conversion chemistry. Catal Today 42:183–189.  https://doi.org/10.1016/S0920-5861(98)00090-X CrossRefGoogle Scholar
  10. 10.
    Yildiz M, Aksu Y, Simon U, Kailasam K, Goerke O, Schomäcker R, Thomas A, Arndt S (2014) Enhanced catalytic performance of MnxOy-Na2WO_SiO2 for the oxidative coupling. Chem Commun 50:14440–14442.  https://doi.org/10.1016/j.apcata.2012.02.046 CrossRefGoogle Scholar
  11. 11.
    Shi C, Rosynek MP, Lunsford JH (1994) Origin of carbon oxides during the oxidative coupling of methane. J Phys Chem 98:8371–8376.  https://doi.org/10.1021/j100085a017 CrossRefGoogle Scholar
  12. 12.
    Keller GE, Bhasin MM (1982) Synthesis of ethylene via oxidative coupling of methane I. Determination of active catalysts. J Catal 73:9–19.  https://doi.org/10.1016/0021-9517(82)90075-6 CrossRefGoogle Scholar
  13. 13.
    Takanabe K, Iglesia E (2009) Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts. J Phys Chem C 113:10131–10145.  https://doi.org/10.1021/jp9001302 CrossRefGoogle Scholar
  14. 14.
    Takanabe K, Iglesia E (2008) Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2. Angew Chemie 47:7689–7693.  https://doi.org/10.1002/anie.200802608 CrossRefGoogle Scholar
  15. 15.
    Thybaut JW, Sun J, Olivier L, Van Veen AC, Mirodatos C, Marin GB (2011) Catalyst design based on microkinetic models: oxidative coupling of methane. Catal Today 159:29–36.  https://doi.org/10.1016/j.cattod.2010.09.002 CrossRefGoogle Scholar
  16. 16.
    Yildiz M, Aksu Y, Simon U, Otremba T, Kailasam K, Göbel C, Girgsdies F, Görke O, Rosowski F, Thomas A, Schomäcker R, Arndt S (2016) Silica material variation for MnxOy-Na2WO4/SiO2. Appl Catal A 525:168–179.  https://doi.org/10.1016/j.apcata.2016.06.034 CrossRefGoogle Scholar
  17. 17.
    Lee MR, Park M, Jeon W, Choi J, Suh Y, Jin D (2012) A kinetic model for the oxidative coupling of methane over Na2WO4/Mn/SiO2. Fuel Process Technol 96:175–182.  https://doi.org/10.1016/j.fuproc.2011.12.038 CrossRefGoogle Scholar
  18. 18.
    Beck B, Fleischer V, Arndt S, Hevia MG, Urakawa A, Hugo P, Schomäcker R (2014) Oxidative coupling of methane—A complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal Today 228:212–218.  https://doi.org/10.1016/j.cattod.2013.11.059 CrossRefGoogle Scholar
  19. 19.
    Sinev MY (1992) Elementary steps of radical-surface interactions in oxidative coupling of methane. Catal Today 13:561–564.  https://doi.org/10.1016/0920-5861(92)80081-W CrossRefGoogle Scholar
  20. 20.
    Pak S, Qiu P, Lunsferd JH (1998) Elementary reactions in the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO Catalysts. J Catal 179:222–230CrossRefGoogle Scholar
  21. 21.
    Ekstrom A, Lapszewicz Ja, Campbell I (1989) Origin of the low limits in the higher hydrocarbon yields in the oxidative coupling reaction of methane. Appl Catal 56:L29–L34.  https://doi.org/10.1016/S0166-9834(00)80153-0 CrossRefGoogle Scholar
  22. 22.
    Nelson PF, Cant NW (1990) Oxidation of C2 hydrocarbon products during the oxidative coupling of methane over Li MgO. J Phys Chem 94:3756–3761CrossRefGoogle Scholar
  23. 23.
    Parishana S, Littlewood P, Arinchtein A, Fleischer V, Schomäcker R (2017) Chemical looping as a reactor concept for the oxidative coupling of methane over the MnxOy-Na2WO4/SiO2 catalyst, benefits and limitation. Catal Today.  https://doi.org/10.1016/j.fuproc.2011.12.038 Google Scholar
  24. 24.
    Zavyalova U, Holena M, Schlögl R, Baerns M (2011) Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3:1935–1947  https://doi.org/10.1002/cctc.201100186 CrossRefGoogle Scholar
  25. 25.
    Pak S, Lunsford JH (1998) Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. Appl Catal A 168:131–137CrossRefGoogle Scholar
  26. 26.
    Palermo A, Pedro J, Vazquez H, Lee AF, Tikhov MS, Lambert RM (1998) Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. J Catal 177:259–266CrossRefGoogle Scholar
  27. 27.
    Wang D, Rosynek MP, Lunsford JH (1995) The effect of chloride ions on a Li + MgO catalyst for the oxidative dehydrogenation of ethane.pdf. J Catal 151:155–167CrossRefGoogle Scholar
  28. 28.
    Fang X, Li S, Gu J, Yang D (1992) Preparation and characterization of W-Mn catalyst for oxidative coupling of methane. J Mol Catal 6:427–433Google Scholar
  29. 29.
    V. Fleischer, R. Steuer, S. Parishan, R. Schomäcker (2016) Investigation of the surface reaction network of the oxidative coupling of methane over Na < inf> 2</inf> WO < inf> 4</inf>/Mn/SiO < inf> 2</inf> catalyst by temperature programmed and dynamic experiments. J Catal.  https://doi.org/10.1016/j.jcat.2016.06.014.Google Scholar
  30. 30.
    Yildiz M, Simon U, Otremba T, Aksu Y, Kailasam K, Thomas A, Schomäcker R, Arndt S (2014) Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catal Today 228:5–14.  https://doi.org/10.1016/j.cattod.2013.12.024 CrossRefGoogle Scholar
  31. 31.
    Fleischer V, Steuer R, Parishan S, Schomäker R (2016) Investigation of the surface reaction network of the oxidative coupling of methane over Na2WO4/Mn/SiO2 catalyst by temperature programmed and dynamic experiments. J Catal 341:91–103.  https://doi.org/10.1016/j.jcat.2016.06.014 CrossRefGoogle Scholar
  32. 32.
    Le HV, Parishan S, Sagaltchik A, Goebel C, Schlesiger C, Malzer W, Trunschke A, Schomaecker R, Thomas A (2017) Solid-state ion-exchanged Cu/mordenite catalysts for the direct conversion of methane to methanol. ACS Catal.  https://doi.org/10.1021/acscatal.6b02372 Google Scholar
  33. 33.
    Arndt S, Simon U, Heitz S, Berthold a, Beck B, Görke O, Epping J-D, Otremba T, Aksu Y, Irran E, Laugel G, Driess M, Schubert H, Schomäcker R (2011) Li-doped MgO from different preparative routes for the oxidative coupling of methane. Top Catal 54:1266–1285.  https://doi.org/10.1007/s11244-011-9749-z CrossRefGoogle Scholar
  34. 34.
    Efstathiou aM, Verykios XE (1997) Transient methods in heterogeneous catalysis: experimental features and application to study mechanistic aspects of the CH4/O2 (OCM), NH3/O2 and NO/He reactions. Appl Catal A 151:109–166.  https://doi.org/10.1016/S0926-860X(96)00262-1 CrossRefGoogle Scholar
  35. 35.
    Fleischer V, Littlewood P, Parishan S, Schomäcker R (2016) Chemical looping as reactor concept for the oxidative coupling of methane over a Na2WO4/Mn/SiO2 catalyst. Chem Eng J 306:646–654.  https://doi.org/10.1016/j.cej.2016.07.094 CrossRefGoogle Scholar
  36. 36.
    Dooley S, Dryer FL, Yang B, Wang J, Cool Ta, Kasper T, Hansen N (2011) An experimental and kinetic modeling study of methyl formate low-pressure flames. Combust Flame 158:732–741.  https://doi.org/10.1016/j.combustflame.2010.11.003 CrossRefGoogle Scholar
  37. 37.
    Dooley S, Burke MP, Chaos M, Stein Y, Dryer FL, Zhukov VP, Finch O, Simmie JM, Curran HJ (2010) Methyl formate oxidation: speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model, Int J Chem Kinet.  https://doi.org/10.1002/kin Google Scholar
  38. 38.
    Schwarz H, Geske M, Franklin Goldsmith C, Schlögl R, Horn R (2014) Fuel-rich methane oxidation in a high-pressure flow reactor studied by optical-fiber laser-induced fluorescence, multi-species sampling profile measurements and detailed kinetic simulations. Combust Flame 161:1688–1700.  https://doi.org/10.1016/j.combustflame.2014.01.007 CrossRefGoogle Scholar
  39. 39.
    Lomonosov V, Usmanov T, Sinev M, Bychkov V (2014) Ethylene oxidation under conditions of the oxidative coupling of methane. Kinet Catal 55:474–480.  https://doi.org/10.1134/S0023158414030070 CrossRefGoogle Scholar
  40. 40.
    Yu L, Li W, Ducarme V, Mirodatos C, Martin Ga (1998) Inhibition of gas-phase oxidation of ethylene in the oxidative conversion of methane and ethane over CaO, La2O3/CaO and SrO–La2O3/CaO catalysts. Appl Catal A Gen 175:173–179.  https://doi.org/10.1016/S0926-860X(98)00208-7 CrossRefGoogle Scholar
  41. 41.
    Roos JA, Korf SJ, Veehof RHJ, Van ommen JG, Ross JRH (1989) Reaction-path of the oxidative coupling of methane over a lithium-doped magnesium-oxide catalyst—factors affecting the rate of total oxidation of ethane and ethylene. Appl Catal 52:147–156.  https://doi.org/10.1016/s0166-9834(00)83378-3 CrossRefGoogle Scholar
  42. 42.
    Sun J, Thybaut J, Marin G (2008) Microkinetics of methane oxidative coupling. Catal Today 137:90–102.  https://doi.org/10.1016/j.cattod.2008.02.026 CrossRefGoogle Scholar
  43. 43.
    Falconer JL, Schwarz Ja (1983) Temperature-programmed desorption and reaction: applications to supported catalysts. Catal Rev 25:141–227.  https://doi.org/10.1080/01614948308079666 CrossRefGoogle Scholar
  44. 44.
    Baró AM, Ibach H (1981) Thermal evolution and decomposition of ethylene on Pt(111). J Chem Phys 74:4194–4199.  https://doi.org/10.1063/1.441549 CrossRefGoogle Scholar
  45. 45.
    Stroscio JA, Bare SR, Ho W (1984) The chemisorption and decomposition of ethylene and acetylene on Ni(110). Surf Sci 148:499–525.  https://doi.org/10.1016/0039-6028(84)90596-X CrossRefGoogle Scholar
  46. 46.
    Park C, Keane MA (2004) Catalyst support effects in the growth of structured carbon from the decomposition of ethylene over nickel. J Catal 221:386–399.  https://doi.org/10.1016/j.jcat.2003.08.014 CrossRefGoogle Scholar
  47. 47.
    Haber J (2008) Fundamentals of hydrocarbon oxidation, Handb Heterog Catal.  https://doi.org/10.1002/9783527610044.hetcat0170 Google Scholar
  48. 48.
    Linic S, Barteau MA (2005) Heterogeneous catalysis of alkene epoxidation. Handb Heterog Catal.  https://doi.org/10.1002/9783527610044.hetcat0175 Google Scholar
  49. 49.
    Martin GA, Bates A, Ducarme V, Mirodatos C (1989) Oxidative conversion of methane and C2 hydrocarbons on oxides: homogeneous versus heterogeneous processes. Appl Catal 47:287–297.  https://doi.org/10.1016/S0166-9834(00)83234-0 CrossRefGoogle Scholar
  50. 50.
    Asami K, Shikada T, Fujimoto K, Tominaga H (1987) Oxidative coupling of methane over lead oxide catalyst: kinetic study and reaction mechanism. Ind Eng Chem Res 26:2348–2353CrossRefGoogle Scholar
  51. 51.
    Takanabe K, Shahid S (2016) Dehydrogenation of ethane to ethylene via radical pathways enhanced by alkali metal based catalyst in oxysteam condition. Aiche 63:3–194.  https://doi.org/10.1002/aic.15447 Google Scholar
  52. 52.
    Nelson PF, Lukey Ca, Cant NW (1988) Isotopic evidence for direct methyl coupling and ethane to ethylene conversion during partial oxidation of methane over lithium/magnesium oxide. J Phys Chem 92:6176–6179.  https://doi.org/10.1021/j100333a003 CrossRefGoogle Scholar
  53. 53.
    Shahri SMK, Alavi SM (2009) Kinetic studies of the oxidative coupling of methane over the Mn/Na2WO4/SiO2 catalyst. J Nat Gas Chem 18:25–34.  https://doi.org/10.1016/S1003-9953(08)60079-1 CrossRefGoogle Scholar
  54. 54.
    Quiceno JWR, Deutschmann O (2005) Gas phase reactions: total and partial oxidation of C1-4 alkanes in the high and medium temperature range. Eur Combust Meet 64:1–41Google Scholar
  55. 55.
    Mims Ca, Mauti R, Dean aM, Rose KD (1994) Radical chemistry in methane oxidative coupling: tracing of ethylene secondary reactions with computer models and isotopes. J Phys Chem 98:13357–13372.  https://doi.org/10.1021/j100101a041 CrossRefGoogle Scholar
  56. 56.
    Fleischer V, Simon U, Parishan S, Colmenares MG, Görke O, Gurlo A, Riedel W, Thum L, Schmidt J, Risse T, Dinse K-P, Schomäcker R (2018) Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J Catal 360:102–117CrossRefGoogle Scholar
  57. 57.
    Kennedy EM, Cant NW (1991) Comparison of the oxidative dehydrogenation of ethane and oxidative coupling of methane over rare earth oxides. Appl Catal 75:321–330.  https://doi.org/10.1016/S0166-9834(00)83141-3 CrossRefGoogle Scholar
  58. 58.
    Côme G-M (2001) Gas-phase thermal reactions: chemical engineering kinetics. Springer, Dordrecht.  https://doi.org/10.1007/978-94-015-9805-7 CrossRefGoogle Scholar
  59. 59.
    Mackie JC, Smith JG, Nelson PF, Tyler RJ (1990) Inhibition of C2 oxidation by methane under oxidative coupling conditions. Energy Fuels 4:277–285.  https://doi.org/10.1021/ef00021a011 CrossRefGoogle Scholar
  60. 60.
    Pogosyan NM, Pogosyan MD, Strekova LN, Tavadyan LA, Arutyunov VS (2015) Effect of the concentrations of methane and ethylene on the composition of the products of their cooxidation. Russ J Phys Chem B 9:218–222.  https://doi.org/10.1134/S1990793115020104 CrossRefGoogle Scholar
  61. 61.
    Dittmeyer R, Emig G (2006) Simultaneous heat and mass transfer and chemical reaction. In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Hoboken, pp 1727–1784.  https://doi.org/10.1002/9783527610044.hetcat0094 Google Scholar
  62. 62.
    Mohagheghi M, Bakeri G, Saeedizad M (2007) Study of the effects of external and internal diffusion on the propane dehydrogenation reaction over Pt-Sn/Al2O3 catalyst. Chem Eng Technol 30:1721–1725.  https://doi.org/10.1002/ceat.200700157 CrossRefGoogle Scholar
  63. 63.
    Campbell KD, Morales E, Lunsford JH (1987) Gas-phase coupling of methyl radicals during the catalytic partial oxidation of methane. J Am Chem Soc 109:7900–7901.  https://doi.org/10.1021/ja00259a059 CrossRefGoogle Scholar
  64. 64.
    Driscoll DJ, Martir W, Wang JX, Lunsford JH (1985) Formation of gas-phase methyl radicals over MgO. J Am Chem Soc 107:58–63.  https://doi.org/10.1021/ja00287a011 CrossRefGoogle Scholar
  65. 65.
    Lee JS, Oyama ST (1988) Oxidative coupling of methane to higher hydrocarbons. Catal Rev 30:249–280.  https://doi.org/10.1080/01614948808078620 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Samira Parishan
    • 1
  • Ewa Nowicka
    • 1
  • Vinzenz Fleischer
    • 1
  • Christian Schulz
    • 2
  • Maria G. Colmenares
    • 3
  • Frank Rosowski
    • 2
  • Reinhard Schomäcker
    • 1
  1. 1.Fachgebiet Technische Chemie, Institut für Chemie, Technische Universität BerlinBerlinGermany
  2. 2.BasCat - UniCat BASF Joint Lab, Technische Universität BerlinBerlinGermany
  3. 3.Fachgebiet Keramische Werkstoffe/Chair of Advanced Ceramic Materials, Institut für Werkstoffwissenschaften und Technologien, Technische Universität BerlinBerlinGermany

Personalised recommendations