Catalysis Letters

, Volume 148, Issue 6, pp 1597–1609 | Cite as

Structural Kinetics of Cathode Events on Polymer Electrolyte Fuel Cell Catalysts Studied by Operando Time-Resolved XAFS

Perspective

Abstract

Operando time-resolved X-ray absorption fine structure (XAFS) analysis is promising to investigate the structural kinetics of cathode events on polymer electrolyte fuel cell (PEFC) electrocatalysts. Here we reviewed our recent reports on operando time-resolved XAFS analysis for PEFC cathode catalysts under PEFC operating conditions. Systematic analysis of a series of operando time-resolved XAFS (XANES and EXAFS) spectra showed details of the structural transformations of Pt cathode catalysts (Pt/C, Pt3Co/C, and Pt3Ni/C) in PEFC, and the rate constants of various structural parameters of the Pt cathode catalysts such as electron transfer from/to Pt (oxidative/reductive electron density change of Pt), Pt–O bond formation/breaking, and Pt–Pt bond breaking/reformation of the cathode catalysts were successfully obtained to discuss the mechanisms of the redox processes of the Pt cathode catalysts and the degradation behaviors of the Pt cathode catalysts in PEFC cells. In this paper, we discuss about structural kinetics of the Pt cathode catalysts in PEFC suggested by operando time-resolved XAFS analysis in the viewpoints of the effects of Pt alloying and degradation.

Graphical Abstract

Keywords

Operando XAFS Time-resolved XAFS Polymer electrolyte fuel cell Pt electrocatalysts Structural Kinetics 

Notes

Acknowledgements

This work was supported by the New Energy and Industrial Technology Development Organization of the Ministry of Economy, Trade, and Industry, Japan. XAFS measurements were performed at SPring-8 (Nos. 2005A0451, 2010B1014, 2010B1017, 2011A1031, 2011A1033, 2011B1015, 2011B1017, 2012A1013, 2012A1014, 2013A7820, 2013B7820, 2013B7821, 2014A7820, 2014B7820, 2015A7820, 2015B7820). We thank Prof. Y. Iwasawa, Prof. T. Uruga, Dr. O. Sekizawa, Dr. K. Nagasawa at UEC, Dr. H. Matsui and Dr. S. Kityakarn at Nagoya Univ., and Prof. T. Yokoyama and Dr. T. Saida at IMS.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Bañares MA (2005) Catal Today 100:71CrossRefGoogle Scholar
  2. 2.
    Topsøe H (2003) J Catal 216:155CrossRefGoogle Scholar
  3. 3.
    Che M, Védrine JC (2012) Characterization of solid materials and heterogeneous catalysts—from structure to surface reactivity. Wiley-VHC, WeinheimCrossRefGoogle Scholar
  4. 4.
    Tao F, Zhang SR, Nguyen L, Zhang XQ (2012) Chem Soc Rev 41:7980CrossRefGoogle Scholar
  5. 5.
    Gu M, Parent LR, Mehdi BL, Unocic RR, McDowell MT, Sacci RL, Xu W, Connell JG, Xu PH, Abellan P, Chen XL, Zhang YH, Perea DE, Evans JE, Lauhon LJ, Zhang JG, Liu J, Browning ND, Cui Y, Arslan I, Wang CM (2013) Nano Lett 13:6106CrossRefGoogle Scholar
  6. 6.
    Tao F, Crozier PA (2016) Chem Rev 116:3487CrossRefGoogle Scholar
  7. 7.
    Takagi Y, Wang H, Uemura Y, Ikenaga E, Sekizawa O, Uruga T, Ohashi H, Senba Y, Yumoto H, Yamazaki H, Goto S, Tada M, Iwasawa Y, Yokoyama T (2014) Appl Phys Lett 105:131602CrossRefGoogle Scholar
  8. 8.
    Bare SR, Ressler T (2009) In: Gates BC, Knozinger H (eds) Advances in catalysis, vol 52. Elsevier, San Diego, p 339Google Scholar
  9. 9.
    Frahm R (1989) Rev Sci Instrum 60:2515CrossRefGoogle Scholar
  10. 10.
    Iwasawa Y, Asakura K, Tada M (2016) XAFS techniques for catalysts, nanomaterials, and surfaces. Springer, SwitzerlandGoogle Scholar
  11. 11.
    Frahm R, Richwin M, Lutzenkirchen-Hecht D (2005) Phys Scr T115:974CrossRefGoogle Scholar
  12. 12.
    Stötzel J, Lützenkirchen-Hecht D, Frahm R (2010) Rev Sci Instrum 81:073109CrossRefGoogle Scholar
  13. 13.
    Imai H, Matsumoto M, Miyazaki T, Kato K, Tanida H, Uruga T (2011) Chem Commun 47:3538CrossRefGoogle Scholar
  14. 14.
    Nishimura S, Mott D, Takagaki A, Maenosono S, Ebitani K (2011) Phys Chem Chem Phys 13:9335CrossRefGoogle Scholar
  15. 15.
    Frenkel AI, Wang Q, Marinkovic N, Chen JG, Barrio L, Si R, Camara AL, Estrella AM, Rodriguez JA, Hanson JC (2011) J Phys Chem C 115:17884CrossRefGoogle Scholar
  16. 16.
    Hong JP, Marceau E, Khodakov AY, Griboval-Constant A, La Fontaine C, Briois V (2012) Chem Eur J 18:2802CrossRefGoogle Scholar
  17. 17.
    Harada M, Kamigaito Y (2012) Langmuir 28:2415CrossRefGoogle Scholar
  18. 18.
    Newton MA, Ferri D, Smolentsev G, Marchionni V, Nachtegaal M (2016) J Am Chem Soc 138:13930CrossRefGoogle Scholar
  19. 19.
    Chu S, Zheng L, An P, Gong H, Hu T, Xie Y, Zhang J (2017) J Synchrotron Rad 24:674CrossRefGoogle Scholar
  20. 20.
    Okumura K, Matsui H, Sanada T, Arao M, Honma T, Hirayama S, Niwa M (2009) J Catal 265:89CrossRefGoogle Scholar
  21. 21.
    Ohyama J, Teramura K, Higuchi Y, Shishido T, Hitomi Y, Kato K, Tanida H, Uruga T, Tanaka T (2011) ChemPhysChem 12:127CrossRefGoogle Scholar
  22. 22.
    Shimizu K, Sugino K, Kato K, Yokota S, Okumura K, Satsuma A (2007) J Phys Chem C 111:1683CrossRefGoogle Scholar
  23. 23.
    Matsushita T, Kaminaga U (1980) J Appl Crystallogr 13:465CrossRefGoogle Scholar
  24. 24.
    Phizackerley RP, Rek ZU, Stephenson GB, Conradson SD, Hodgson KO, Matsushita T, Oyanagi H (1983) J Appl Crystallogr 16:220CrossRefGoogle Scholar
  25. 25.
    Pascarelli S, Mathon O, Mairs T, Kantor I, Agostini G, Strohm C, Pasternak S, Perrin F, Berruyer G, Chappelet P, Clavel C, Dominguez MC (2016) J Synchrotron Rad 23:353CrossRefGoogle Scholar
  26. 26.
    Newton MA (2007) J Synchrot Radiat 14:372CrossRefGoogle Scholar
  27. 27.
    Nilsson J, Carlsson PA, Fouladvand S, Martin NM, Gustafson J, Newton MA, Lundgren E, Gronbeck H, Skoglundh M (2015) ACS Catal 5:2481CrossRefGoogle Scholar
  28. 28.
    Nilsson J, Carlsson PA, Martin NM, Adams EC, Agostini G, Grönbeck H, Skoglundh M (2017) J Catal 356:237CrossRefGoogle Scholar
  29. 29.
    Ressler T (2009) Catal Today 145:258CrossRefGoogle Scholar
  30. 30.
    Ressler T, Walter A, Huang ZD, Bensch W (2008) J Catal 254:170CrossRefGoogle Scholar
  31. 31.
    Tada M, Bal R, Sasaki T, Uemura Y, Inada Y, Tanaka S, Nomura M, Iwasawa Y (2007) J Phys Chem C 111:10095CrossRefGoogle Scholar
  32. 32.
    Yamamoto T, Suzuki A, Nagai Y, Tanabe T, Dong F, Inada Y, Nomura M, Tada M, Iwasawa Y (2007) Angew Chem Int Ed 46:9253CrossRefGoogle Scholar
  33. 33.
    Tada M, Uemura Y, Bal R, Inada Y, Nomura M, Iwasawa Y (2010) Phys Chem Chem Phys 12:5701CrossRefGoogle Scholar
  34. 34.
    Uemura Y, Inada Y, Bando KK, Sasaki T, Kamiuchi N, Eguchi K, Yagishita A, Nomura M, Tada M, Iwasawa Y (2011) J Phys Chem C 115:5823CrossRefGoogle Scholar
  35. 35.
    Uemura Y, Inada Y, Niwa Y, Kimura M, Bando KK, Yagishita A, Iwasawa Y, Nomura M (2012) Phys Chem Chem Phys 14:2152CrossRefGoogle Scholar
  36. 36.
    Asakura H, Teramura K, Shishido T, Tanaka T, Yan N, Xiao CX, Yao SY, Kou Y (2012) Phys Chem Chem Phys 14:2983CrossRefGoogle Scholar
  37. 37.
    Asakura H, Shishido T, Tanaka T (2012) J Phys Chem A 116:4029CrossRefGoogle Scholar
  38. 38.
    Kimura M, Niwa Y, Uemura K, Nagai T, Inada Y, Nomura M (2013) Mater Trans 54:246CrossRefGoogle Scholar
  39. 39.
    Nagai Y, Dohmae K, Ikeda Y, Takagi N, Tanabe T, Hara N, Guilera G, Pascarelli S, Newton MA, Kuno O, Jiang HY, Shinjoh H, Matsumoto S (2008) Angew Chem Int Ed 47:9303CrossRefGoogle Scholar
  40. 40.
    Suzuki A, Inada Y, Yamaguchi A, Chihara T, Yuasa M, Nomura M, Iwasawa Y (2003) Angew Chem Int Ed 42:4795CrossRefGoogle Scholar
  41. 41.
    Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657CrossRefGoogle Scholar
  42. 42.
    Tromp M, Sietsma JRA, van Bokhoven JA, van Strijdonck GPF, van Haaren RJ, van der Eerden AMJ, van Leeuwen P, Koningsberger DC (2003) Chem Commun 1:128CrossRefGoogle Scholar
  43. 43.
    Neylon MK, Marshall CL, Kropf AJ (2002) J Am Chem Soc 124:5457CrossRefGoogle Scholar
  44. 44.
    Yamaguchi A, Suzuki A, Shido T, Inada Y, Asakura K, Nomura M, Iwasawa Y (2001) Catal Lett 71:203CrossRefGoogle Scholar
  45. 45.
    Sakamoto T, Masuda T, Yoshimoto K, Kishi H, Yamaguchi S, Matsumura D, Tamura K, Hori A, Horiuchi Y, Serov A, Artyushkova K, Atanassov P, Tanaka H (2017) J Electrochem Soc 164:F229CrossRefGoogle Scholar
  46. 46.
    Tromp M, Dent AJ, Headspith J, Easun TL, Sun XZ, George MW, Mathon O, Smolentsev G, Hamilton ML, Evans J (2013) J Phys Chem B 117:7381CrossRefGoogle Scholar
  47. 47.
    Katayama M, Sumiwaka K, Miyahara R, Yamashige H, Arai H, Uchimoto Y, Ohta T, Inada Y, Ogumi Z (2014) J Power Sources 269:994CrossRefGoogle Scholar
  48. 48.
    Huang WF, Tao S, Zhou J, Si C, Chen X, Huang W, Jin CH, Chu WS, Song L, Wu ZY (2014) J Phys Chem C 118:796CrossRefGoogle Scholar
  49. 49.
    Chen LX, Zhang X, Shelby ML (2014) Chem Sci 5:4136CrossRefGoogle Scholar
  50. 50.
    Sato T, Nozawa S, Tomita A, Hoshino M, Koshihara SY, Fujii H, Adachi S (2012) J Phys Chem C 116:14232CrossRefGoogle Scholar
  51. 51.
    Wang H, Yu C, Wei X, Gao ZH, Xu GL, Sun DR, Li ZJ, Zhou YF, Li QJ, Zhang BB, Xu JQ, Wang L, Zhang Y, Tan YL, Tao Y (2017) J Synchrotron Rad 24:667CrossRefGoogle Scholar
  52. 52.
    Yabashi M, Tanaka H, Tanaka T, Tomizawa H, Togashi T, Nagasono M, Ishikawa T, Harries JR, Hikosaka Y, Hishikawa A, Nagaya K, Saito N, Shigemasa E, Yamanouchi K, Ueda K (2013) J Phys B 46:164001CrossRefGoogle Scholar
  53. 53.
    Uemura Y, Kido D, Wakisaka Y, Uehara H, Ohba T, Niwa Y, Nozawa S, Sato T, Ichiyanagi K, Fukaya R, Adachi S, Katayama T, Togashi T, Owada S, Ogawa K, Yabashi M, Hatada K, Takakusagi S, Yokoyama T, Ohtani B, Asakura K (2016) Angew Chem Int Ed 55:1364CrossRefGoogle Scholar
  54. 54.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) J Phys Chem B 109:22701CrossRefGoogle Scholar
  55. 55.
    Russell AE, Rose A (2004) Chem Rev 104:4613CrossRefGoogle Scholar
  56. 56.
    Antolini E, Salgado JRC, Giz MJ, Gonzalez ER (2005) Int J Hydrog Energy 30:1213CrossRefGoogle Scholar
  57. 57.
    Witkowska A, Dsoke S, Principi E, Marassi R, Di Cicco A, Albertini VR (2008) J Power Sources 178:603CrossRefGoogle Scholar
  58. 58.
    Lewis EA, Kendrick I, Jia Q, Grice C, Segre CU, Smotkin ES (2011) Electrochim Acta 56:8827CrossRefGoogle Scholar
  59. 59.
    Melke J, Schoekel A, Gerteisen D, Dixon D, Ettingshausen F, Cremers C, Roth C, Ramaker DE (2012) J Phys Chem C 116:2838CrossRefGoogle Scholar
  60. 60.
    Friebel D, Miller DJ, O’Grady CP, Anniyev T, Bargar J, Bergmann U, Ogasawara H, Wikfeldt KT, Pettersson LGM, Nilsson A (2011) Phys Chem Chem Phys 13:262CrossRefGoogle Scholar
  61. 61.
    Mukerjee S, Srinivasan S, Soriaga MP, McBreen J (1995) J Electrochem Soc 142:1409CrossRefGoogle Scholar
  62. 62.
    Roth C, Martz N, Buhrmester T, Scherer J, Fuess H (2002) Phys Chem Chem Phys 4:3555CrossRefGoogle Scholar
  63. 63.
    Viswanathan R, Hou GY, Liu RX, Bare SR, Modica F, Mickelson G, Segre CU, Leyarovska N, Smotkin ES (2002) J Phys Chem B 106:3458CrossRefGoogle Scholar
  64. 64.
    Tada M, Murata S, Asakoka T, Hiroshima K, Okumura K, Tanida H, Uruga T, Nakanishi H, Matsumoto S, Inada Y, Nomura M, Iwasawa Y (2007) Angew Chem Int Ed 46:4310CrossRefGoogle Scholar
  65. 65.
    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Chem Rev 107:3904CrossRefGoogle Scholar
  66. 66.
    de Bruijn FA, Dam VAT, Janssen GJM (2008) Fuel Cells 8:3CrossRefGoogle Scholar
  67. 67.
    Marković NM, Schmidt TJ, Stamenković V, Ross PN (2001) Fuel Cells 1:105CrossRefGoogle Scholar
  68. 68.
    Ous T, Arcoumanis C (2013) J Power Sources 240:558CrossRefGoogle Scholar
  69. 69.
    Meyers JP, Darling RM (2006) J Electrochem Soc 153:A1432CrossRefGoogle Scholar
  70. 70.
    Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607CrossRefGoogle Scholar
  71. 71.
    Chu D, Jiang R, Gardner K, Jacobs R, Schmidt J, Quakenbush T, Stephens J (2001) J Power Sources 96:174CrossRefGoogle Scholar
  72. 72.
    Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochim Acta 49:1451Google Scholar
  73. 73.
    Schulze M, Wagner N, Kaz T, Friedrich KA (2007) Electrochim Acta 52:2328CrossRefGoogle Scholar
  74. 74.
    Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) J Electrochem Soc 157:A82CrossRefGoogle Scholar
  75. 75.
    Carlton CE, Chen S, Ferreira PJ, Allard LF, Shao-Horn Y (2012) J Phys Chem Lett 3:161CrossRefGoogle Scholar
  76. 76.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) J Chem Phys 120:10240CrossRefGoogle Scholar
  77. 77.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jońsson H (2004) J Phys Chem B 108:17886CrossRefGoogle Scholar
  78. 78.
    Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) J Chem Phys 123:204717CrossRefGoogle Scholar
  79. 79.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897CrossRefGoogle Scholar
  80. 80.
    Mansour AN, Cook JW, Sayers DE (1984) J Phys Chem 88:2330CrossRefGoogle Scholar
  81. 81.
    Ishiguro N, Saida T, Uruga T, Nagamatsu S, Sekizawa O, Nitta K, Yamamoto T, Ohkoshi S, Iwasawa Y, Yokoyama T, Tada M (2012) ACS Catal 2:1319CrossRefGoogle Scholar
  82. 82.
    Uruga T, Tanida H, Inoue K, Yamazaki H, Irie T (2007) AIP Conf Proc 882:914CrossRefGoogle Scholar
  83. 83.
    Ishiguro N, Saida T, Uruga T, Sekizawa O, Nagasawa K, Nitta K, Yamamoto T, Ohkoshi S, Yokoyama T, Tada M (2013) Phys Chem Chem Phys 15:18827CrossRefGoogle Scholar
  84. 84.
    Sekizawa O, Uruga T, Tada M, Nitta K, Kato K, Tanida H, Takeshita K, Takahashi S, Sano M, Aoyagi H, Watanabe A, Nariyama N, Ohashi H, Yumoto H, Koyama T, Senba Y, Takeuchi T, Furukawa Y, Ohata T, Matsushita T, Ishizawa Y, Kudo T, Kimura H, Yamazaki H, Tanaka T, Bizen T, Seike T, Goto S, Ohno H, Takata M, Kitamura H, Ishikawa T, Yokoyama T, Iwasawa Y (2013) J Phys Conf Ser 430:012020CrossRefGoogle Scholar
  85. 85.
    Ishiguro N, Kityakarn S, Sekizawa O, Uruga T, Sasabe T, Nagasawa K, Yokoyama T, Tada M (2014) J Phys Chem C 118:15874CrossRefGoogle Scholar
  86. 86.
    Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) J Am Chem Soc 133:17428CrossRefGoogle Scholar
  87. 87.
    Perez-Alonso FJ, McCarthy DN, Nierhoff A, Hernandez-Fernandez P, Strebel C, Stephens IEL, Nielsen JH, Chorkendorff I (2012) Angew Chem Int Ed 51:4641CrossRefGoogle Scholar
  88. 88.
    Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) ECS Trans 41:775CrossRefGoogle Scholar
  89. 89.
    Speder J, Zana A, Spanos I, Kirkensgaard JJK, Mortensen K, Arenz M (2013) Electrochem Commun 34:153CrossRefGoogle Scholar
  90. 90.
    Ishiguro N, Kityakarn S, Sekizawa O, Uruga T, Matsui H, Taguchi M, Nagasawa K, Yokoyama T, Tada M (2016) J Phys Chem C 120:19642CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RIKEN SPring-8 CenterSayoJapan
  2. 2.Research Center for Materials ScienceNagoya UniversityNagoyaJapan

Personalised recommendations