Advertisement

Catalysis Letters

, Volume 148, Issue 6, pp 1589–1596 | Cite as

Synthesis of Efficient Ce Modified CuO/CoAl-HT Catalysts for Styrene Epoxidation

  • Haiping Li
  • Rui Hu
  • Pengfei Yang
  • Yufei He
  • Junting Feng
  • Dianqing Li
Article
  • 215 Downloads

Abstract

The controllable synthesis of efficient supported non-noble with fitting chemical state for styrene epoxidation is of great significance to save scarce resources and improve the atom economy. Herein, a series of Ce modified CuO/CoAl-hydrotalcite catalysts was prepared using deposition–precipitation (DP) method. The appropriate addition of Ce (Ce/Cu = 0.2) could contribute to the dispersion of CuO on the surface of support. Moreover, the chemical state of CuO could be finely tuned by the introduction of Ce additives: Ce interacted with CuO and maked CuO surface enrichment of electrons, while CeO2 weakened the interaction between CuO and CoAl-HT support, increasing the percentage of Cu2+ ions (CuA2+) in metal oxides. Therefore, the obtained CuO–0.2CeO2/CoAl-HT catalyst, possessing maximum CuA2+, exhibited optimal styrene oxide yield in styrene epoxidation reaction at similar condition to date, achieving 79.5% selectivity at 99.6% styrene conversion.

Graphical Abstract

Keywords

Ce additives Chemical state Interaction Non-noble catalyst 

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0301601), the National Natural Science Foundation (21706009) and the Fundamental Research Funds for the Central Universities (BUCTRC201725, JD1716).

References

  1. 1.
    Davies L, McMorn P, Bethell D, Page P, King F, Hancock F, Hutchings G (2001) J Catal 198:319–327CrossRefGoogle Scholar
  2. 2.
    Yadav V, Chandalia S (1998) Org Process Res Dev 2(5):294–297CrossRefGoogle Scholar
  3. 3.
    Hu L, Yue B, Wang C, Chen X, He H (2014) Appl Catal A 477:141–146CrossRefGoogle Scholar
  4. 4.
    Wang Y, Zhang Q, Shishido T, Takehira K (2002) J Catal 209(1):186–196CrossRefGoogle Scholar
  5. 5.
    Bawaked S, Dummer N, Dimitratos N, Bethell D, He Q, Hutchings G (2009) Green Chem 11(7):1037–1044CrossRefGoogle Scholar
  6. 6.
    Choudhary V, Jha R, Chaudhari N, Jana P (2007) Catal Commun 8(10):1556–1560CrossRefGoogle Scholar
  7. 7.
    Santra A, Cowell J, Lambert R (2000) Catal Lett 67(2):87–91CrossRefGoogle Scholar
  8. 8.
    Chen C, Qu J, Cao C, Niu F, Song W (2011) J Mater Chem 21(15):5774–5779CrossRefGoogle Scholar
  9. 9.
    Hu R, Yang P, Pan Y, Li Y, He Y, Feng J, Li D (2017) Dalton Trans 46(39):13463–13471CrossRefPubMedGoogle Scholar
  10. 10.
    Lai L, Potts J, Zhan D, Wang L, Poh C, Tang C, Gong H, Shen Z, Lin J, Ruoff R (2012) Energy Environ Sci 5(7):7936–7942CrossRefGoogle Scholar
  11. 11.
    Gong J (2011) Chem Rev 112(5):2987–3054CrossRefPubMedGoogle Scholar
  12. 12.
    Hu C, Zhang L, Wang Q, Nie Y (2015) Environ Sci Technol 49(14):8639–8647CrossRefPubMedGoogle Scholar
  13. 13.
    Li B, Luo X, Zhu Y, Wang X (2015) Appl Surf Sci 359:609–620CrossRefGoogle Scholar
  14. 14.
    Chen C, Qu J, Cao C, Niu F, Song W (2011) J Mater Chem 21:5774–5779CrossRefGoogle Scholar
  15. 15.
    Valand J, Parekh H, Friedrich H (2013) Catal Commun 40:149–153CrossRefGoogle Scholar
  16. 16.
    Jia W, Liu Y, Hu P, Yu R, Wang Y, Ma L, Wang D, Li Y (2015) Chem Commun 51:8817–8820CrossRefGoogle Scholar
  17. 17.
    Li H, Berntsen H, Fernández E, Walmsley J, Blekkan E, Chen D (2009) Catal Commun 24:38–43CrossRefGoogle Scholar
  18. 18.
    Huang Z, Chen J, Jia Y, Liu H, Xia C, Liu H (2014) Appl Catal B-Environ 147:377–386CrossRefGoogle Scholar
  19. 19.
    Zhou K, Xu R, Sun X, Chen H, Tian Q, Shen D, Li Y (2005) Catal Lett 101(3):169–173CrossRefGoogle Scholar
  20. 20.
    Avgouropoulos G, Ioannides T, Matralis H (2005) Appl Catal B 56:87–93CrossRefGoogle Scholar
  21. 21.
    Zhang S, Hu Q, Fan G, Li F (2013) Catal Commun 39:96–101CrossRefGoogle Scholar
  22. 22.
    Hu Q, Fan G, Zhang S, Yang L, Li F (2015) J Mol Catal A-Chem 397:134–141CrossRefGoogle Scholar
  23. 23.
    Tang Y, Liu Y, Zhu P, Xue Q, Chen L, Lu Y (2009) AIChE J 55(5):1217–1228CrossRefGoogle Scholar
  24. 24.
    Guerreiro E, Gorriz O, Rivarola J, Arrua L (1997) Appl Catal A 165:259–271CrossRefGoogle Scholar
  25. 25.
    Bond G, Namijo S (1989) J Catal 118(2):507–510CrossRefGoogle Scholar
  26. 26.
    Haber J, Machej T, Ungier L, Ziółkowski J (1978) J Solid State Chem 25(3):207–218CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Beijing Engineering Center for Hierarchical CatalystsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations