Catalysis Letters

, Volume 148, Issue 6, pp 1610–1621 | Cite as

Chiral Autocatalysis and Mirror Symmetry Breaking

  • Andrew J. Gellman
  • Karl-Heinz Ernst


Highly enantioselective production of chiral compounds by chiral catalysis is one of the most challenging forms of catalytic selectivity. In this perspective, we argue by examples that the key to achieving high enantioselectivity lies in processes with non-linear kinetics or equilibria that effectively amplify small differences in enantiospecific energetics. Examples of such processes have been uncovered over the past decade and include autocatalysis, surface explosion reactions, stirring or grinding of crystallites, and cooperative self-assembly.

Graphical Abstract


Chirality Enantioselectivity Autocatalysis Surface explosion Sergeants-and-soldiers Mirror symmetry breaking Chiral amplification 



AJG acknowledges support from the US Dept. of Energy under Grant No. DE-SC0008703. Support by the Schweizerischer Nationalfonds zur Förderung der Wissenschaften (grants # 200020_163296, 200021_152559, CRSII5_173720) is gratefully acknowledged. KHE thanks Jack Dunitz, Bart Kahr and Meir Lahav for fruitful discussions.


  1. 1.
    Bolm C, Gladysz JA (2003) Introduction: enantioselective catalysis. Chem Rev 103(8):2761–2762CrossRefGoogle Scholar
  2. 2.
    Siegel JS (1998) Homochiral imperative of molecular evolution. Chirality 10(1–2):24–27CrossRefGoogle Scholar
  3. 3.
    Nguyen LA, He H, Pham-Huy C (2006) Chiral drugs: an overview. Int J Biomed Sci 2(2):85–100PubMedPubMedCentralGoogle Scholar
  4. 4.
    Zaera F (2017) Chirality in adsorption on solid surfaces. Chem Soc Rev 46(23):7374–7398CrossRefPubMedGoogle Scholar
  5. 5.
    Gellman AJ, Tysoe WT, Zaera F (2015) Surface chemistry for enantioselective catalysis. Catal Lett 145(1):220–232CrossRefGoogle Scholar
  6. 6.
    Ernst KH (2012) Molecular chirality at surfaces. Phys Status Solidi B 249(11):2057–2088CrossRefGoogle Scholar
  7. 7.
    Jenkins SJ, Pratt SJ (2007) Beyond the surface atlas: a roadmap and gazetteer for surface symmetry and structure. Surf Sci Rep 62(10):373–429CrossRefGoogle Scholar
  8. 8.
    McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on ‘‘chiral’’ metal surfaces. Langmuir 12(10):2483–2487CrossRefGoogle Scholar
  9. 9.
    Yun Y, Gellman AJ (2015) Enantiospecific adsorption of amino acids on naturally chiral Cu{3,1,17}(R&S) surfaces. Langmuir 31(22):6055–6063CrossRefPubMedGoogle Scholar
  10. 10.
    Yun YJ, Wei D, Sholl DS, Gellman AJ (2014) Equilibrium adsorption of D- and L-Alanine mixtures on naturally chiral Cu{3,1,17}(R&S) surfaces. J Phys Chem C 118(27):14957–14966CrossRefGoogle Scholar
  11. 11.
    Yun YJ, Gellman AJ (2013) Enantioselective separation on naturally chiral metal surfaces: D,L-aspartic acid on Cu(3,1,17) (R&S) surfaces. Angew Chem Int Ed 52(12):3394–3397CrossRefGoogle Scholar
  12. 12.
    Gellman AJ, Huang Y, Koritnik AJ, Horvath JD (2017) Structure-sensitive enantiospecific adsorption on naturally chiral Cu(hkl) (R&S) surfaces. J Phys Condens Matter 29(3):034001CrossRefPubMedGoogle Scholar
  13. 13.
    Horvath JD, Gellman AJ (2002) Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J Am Chem Soc 124(10):2384–2392CrossRefPubMedGoogle Scholar
  14. 14.
    Horvath JD, Gellman AJ (2001) Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J Am Chem Soc 123(32):7953–7954CrossRefPubMedGoogle Scholar
  15. 15.
    Blackmond DG (2010) Kinetic aspects of non-linear effects in asymmetric synthesis, catalysis, and autocatalysis. Tetrahedron Asymmetry 21(11–12):1630–1634CrossRefGoogle Scholar
  16. 16.
    Saito Y, Hyuga H, Colloquium (2013) Homochirality: symmetry breaking in systems driven far from equilibrium. Rev Mod Phys 85(2):603–621CrossRefGoogle Scholar
  17. 17.
    Ahuja S (2000) Chiral separations by chromatography. Oxford University Press, Washington, DCGoogle Scholar
  18. 18.
    Pilling MJ, Seakins PW (1995) Reaction kinetics, 1st edn., Oxford University Press, Washington, DCGoogle Scholar
  19. 19.
    Vanhove D (1996) Catalyst testing at a lab scale in mild oxidation: can you control the reaction temperature? Appl Catal A 138(2):215–234CrossRefGoogle Scholar
  20. 20.
    Williams KA, Schmidt LD (2006) Catalytic autoignition of higher alkane partial oxidation on Rh-coated foams. Appl Catal A 299:30–45CrossRefGoogle Scholar
  21. 21.
    Kimmerle B, Grunwaldt JD, Baiker A, Glatzel P, Boye P, Stephan S, Schroer CG (2009) Visualizing a catalyst at work during the ignition of the catalytic partial oxidation of methane. J Phys Chem C 113(8):3037–3040CrossRefGoogle Scholar
  22. 22.
    Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Prentice-Hall, Inc., Upper Saddle RiverGoogle Scholar
  23. 23.
    Frank FC (1953) On spontaneous asymmetric synthesis. Biochem Biophys Acta 11(4):459–463CrossRefPubMedGoogle Scholar
  24. 24.
    Bonner WA (1991) The Origin and amplification of biomolecular chirality. Orig Life Evol Biosph 21(2):59–111CrossRefPubMedGoogle Scholar
  25. 25.
    Soai K, Niwa S, Hori H (1990) Asymmetric self-catalytic reaction—self-production of chiral 1-(3-Pyridyl)alkanols as chiral self-catalysts in the enantioselective addition of dialkylzinc reagents to pyridine-3-carbaldehyde. J Chem Soc Chem Commun 14:982–983CrossRefGoogle Scholar
  26. 26.
    Gehring T, Busch M, Schlageter M, Weingand D (2010) A concise summary of experimental facts about the soai reaction. Chirality 22(1E):E173–E182CrossRefGoogle Scholar
  27. 27.
    Mauksch M, Tsogoeva SB, Wei SW, Martynova IM (2007) Demonstration of spontaneous chiral symmetry breaking in asymmetric mannich and aldol reactions. Chirality 19(10):816–825CrossRefPubMedGoogle Scholar
  28. 28.
    Mauksch M, Tsogoeva SB, Martynova IM, Wei SW (2007) Evidence of asymmetric autocatalysis in organocatalytic reactions. Angew Chem Int Ed 46(3):393–396CrossRefGoogle Scholar
  29. 29.
    Shibata T, Morioka H, Hayase T, Choji K, Soai K (1996) Highly enantioselective catalytic asymmetric automultiplication of chiral pyrimidyl alcohol. J Am Chem Soc 118(2):471–472CrossRefGoogle Scholar
  30. 30.
    Shibata T, Yonekubo S, Soai K (1999) Practically perfect asymmetric autocatalysis with (2-alkynyl-5-pyrimidyl)alkanols. Angew Chem Int Ed 38(5):659–661CrossRefGoogle Scholar
  31. 31.
    Sato I, Yanagi T, Soai K (2002) Highly enantioselective asymmetric autocatalysis of 2-alkenyl- and 2-vinyl-5-pyrimidyl alkanols with significant amplification of enantiomeric excess. Chirality 14(2–3):166–168CrossRefPubMedGoogle Scholar
  32. 32.
    Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) D- and L-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J Am Chem Soc 121(48):11235–11236CrossRefGoogle Scholar
  33. 33.
    Kawasaki T, Okano Y, Suzuki E, Takano S, Oji S, Soai K (2011) Asymmetric autocatalysis: triggered by chiral isotopomer arising from oxygen isotope substitution. Angew Chem Int Ed 50(35):8131–8133CrossRefGoogle Scholar
  34. 34.
    McCarty J, Falconer J, Madix RJ (1973) Decomposition of formic acid on Ni(110). 1. Flash decomposition from clean surface and flash desorption of reaction products. J Catal 30(2):235–249CrossRefGoogle Scholar
  35. 35.
    Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211CrossRefGoogle Scholar
  36. 36.
    Falconer JL, McCarty JG, Madix RJ (1974) Surface explosion—HCOOH on Ni(110). Surf Sci 42(1):329–330CrossRefGoogle Scholar
  37. 37.
    Sharpe RG, Bowker M (1995) Kinetic-models of surface explosions. J Phys Condens Matter 7(32):6379–6392CrossRefGoogle Scholar
  38. 38.
    Bowker M, Cassidy TJ, Allen MD, Li Y (1994) Surface explosions of acetate intermediates on Rh crystals and catalysts. Surf Sci 309:143–146CrossRefGoogle Scholar
  39. 39.
    Cassidy TJ, Allen MD, Li Y, Bowker M (1993) From surface science to catalysis—surface explosions observed on Rh crystals and supported catalysts. Catal Lett 21(3–4):321–331CrossRefGoogle Scholar
  40. 40.
    Behzadi B, Romer S, Fasel R, Ernst KH (2004) Chiral recognition in surface explosion. J Am Chem Soc 126(30):9176–9177CrossRefPubMedGoogle Scholar
  41. 41.
    Lorenzo MO, Humblot V, Murray P, Baddeley CJ, Haq S, Raval R, Transformations C (2002) Molecular transport, and kinetic barriers in creating the chiral phase of (R,R)-tartaric acid on Cu(110). J Catal 205(1):123–134CrossRefGoogle Scholar
  42. 42.
    Romer S, Behzadi B, Fasel R, Ernst KH (2005) Homochiral conglomerates and racemic crystals in two dimensions: tartaric acid on Cu(110). Chem Eur J 11(14):4149–4154CrossRefPubMedGoogle Scholar
  43. 43.
    Merz L, Ernst KH (2010) Unification of the matrix notation in molecular surface science. Surf Sci 604(11–12):1049–1054CrossRefGoogle Scholar
  44. 44.
    Gellman AJ, Huang Y, Feng X, Pushkarev VV, Holsclaw B, Mhatre BS (2013) Superenantioselective chiral surface explosions. J Am Chem Soc 135(51):19208–19214CrossRefPubMedGoogle Scholar
  45. 45.
    Mhatre BS, Dutta S, Reinicker A, Karagoz B, Gellman AJ (2016) Explosive enantiospecific decomposition of aspartic acid on Cu surfaces. Chem Commun 52(98):14125–14128CrossRefGoogle Scholar
  46. 46.
    Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc Natl Acad Sci USA 98(10):5487–5490CrossRefPubMedGoogle Scholar
  47. 47.
    Cundy KC, Crooks PA (1983) Unexpected phenomenon in the high performance liquid-chromatographic analysis of racemic 14C-labeled nicotine—separation of enantiomers in a totally achiral system. J Chromatogr 281:17–33CrossRefGoogle Scholar
  48. 48.
    Soloshonok VA (2006) Remarkable amplification of the self-disproportionation of enantiomers on achiral-phase chromatography columns. Angew Chem Int Ed 45(5):766–769CrossRefGoogle Scholar
  49. 49.
    Soloshonok VA, Roussel C, Kitagawa O, Sorochinsky AE (2012) Self-disproportionation of enantiomers via achiral chromatography: a warning and an extra dimension in optical purifications. Chem Soc Rev 41(11):4180–4188CrossRefPubMedGoogle Scholar
  50. 50.
    Yun Y, Gellman AJ (2016) Competing forces in chiral surface chemistry: enantiospecificity versus enantiomer aggregation. J Phys Chem C 120(48):27285–27295CrossRefGoogle Scholar
  51. 51.
    Yun YJ, Gellman AJ (2015) Adsorption-induced auto-amplification of enantiomeric excess on an achiral surface. Nat Chem 7(6):520–525CrossRefPubMedGoogle Scholar
  52. 52.
    Green MM, Park JW, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) The macromolecular route to chiral amplification. Angew Chem Int Ed 38(21):3139–3154CrossRefGoogle Scholar
  53. 53.
    Green MM, Reidy MP, Johnson RJ, Darling G, Oleary DJ, Willson G (1989) Macromolecular stereochemistry—the out-of-proportion influence of optically-active Co-monomers on the conformational characteristics of polyisocyanates—the sergeants and soldiers experiment. J Am Chem Soc 111(16):6452–6454CrossRefGoogle Scholar
  54. 54.
    Green MM, Garetz BA, Munoz B, Chang HP, Hoke S, Cooks RG (1995) Majority rules in the copolymerization of mirror-image isomers. J Am Chem Soc 117(14):4181–4182CrossRefGoogle Scholar
  55. 55.
    Palmans ARA, Meijer EW (2007) Amplification of chirality in dynamic supramolecular aggregates. Angew Chem Int Ed 46(47):8948–8968CrossRefGoogle Scholar
  56. 56.
    van Gestel J, Palmans ARA, Titulaer B, Vekemans J, Meijer EW (2005) “Majority-rules” operative in chiral columnar stacks of C-3-symmetrical molecules. J Am Chem Soc 127(15):5490–5494CrossRefPubMedGoogle Scholar
  57. 57.
    Ernst KH (2010) Amplification of chirality at solid surfaces. Orig Life Evol Biosph 40(1):41–50CrossRefPubMedGoogle Scholar
  58. 58.
    Humblot V, Lorenzo MO, Baddeley CJ, Haq S, Raval R (2004) Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu(110). J Am Chem Soc 126(20):6460–6469CrossRefPubMedGoogle Scholar
  59. 59.
    Parschau M, Romer S, Ernst KH (2004) Induction of homochirality in achiral enantiomorphous monolayers. J Am Chem Soc 126(47):15398–15399CrossRefPubMedGoogle Scholar
  60. 60.
    Parschau M, Kampen T, Ernst KH (2005) Homochirality in Monolayers of achiral meso tartaric acid. Chem Phys Lett 407(4–6):433–437CrossRefGoogle Scholar
  61. 61.
    Barbosa L, Sautet P (2001) Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: a periodic density functional theory study. J Am Chem Soc 123(27):6639–6648CrossRefPubMedGoogle Scholar
  62. 62.
    Fasel R, Wider J, Quitmann C, Ernst KH, Greber T (2004) Determination of the absolute chirality of adsorbed molecules. Angew Chem Int Ed 43(21):2853–2856CrossRefGoogle Scholar
  63. 63.
    Roth C, Passerone D, Merz L, Parschau M, Ernst KH (2011) Two-dimensional self-assembly of chiral malic acid on Cu(110). J Phys Chem C 115(4):1240–1247CrossRefGoogle Scholar
  64. 64.
    Karageorgaki C, Ernst KH (2014) A metal surface with chiral memory. Chem Commun 50(15):1814–1816CrossRefGoogle Scholar
  65. 65.
    Karageorgaki C, Passerone D, Ernst KH (2014) Chiral reconstruction of Cu(110) after adsorption of fumaric acid. Surf Sci 629:75–80CrossRefGoogle Scholar
  66. 66.
    Fang Y, Ghijsens E, Ivasenko O, Cao H, Noguchi A, Mali KS, Tahara K, Tobe Y, De Feyter S (2016) Dynamic control over supramolecular handedness by selecting chiral induction pathways at the solution-solid interface. Nat Chem 8(7):711–717CrossRefPubMedGoogle Scholar
  67. 67.
    Chen T, Yang WH, Wang D, Wan LJ (2013) Globally homochiral assembly of two-dimensional molecular networks triggered by co-absorbers. Nat Commun 4:1389CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Katsonis N, Xu H, Haak RM, Kudernac T, Tomovic Z, George S, Van der Auweraer M, Schenning A, Meijer EW, Feringa BL, De Feyter S (2008) Emerging solvent-induced homochirality by the confinement of achiral molecules against a solid surface. Angew Chem Int Ed 47(27):4997–5001CrossRefGoogle Scholar
  69. 69.
    Fasel R, Parschau M, Ernst KH (2006) Amplification of chirality in two-dimensional enantiomorphous lattices. Nature 439(7075):449–452CrossRefPubMedGoogle Scholar
  70. 70.
    Parschau M, Fasel R, Ernst KH (2008) Coverage and enantiomeric excess dependent enantiomorphism in two-dimensional molecular crystals. Cryst Growth Des 8(6):1890–1896CrossRefGoogle Scholar
  71. 71.
    Fasel R, Parschau M, Ernst KH (2003) Chirality transfer from single molecules into self-assembled monolayers. Angew Chem Int Ed 42(42):5178–5181CrossRefGoogle Scholar
  72. 72.
    Chen Q, Lee CW, Frankel DJ, Richardson NV (1999) The formation of enantiospecific phases on a Cu{110} surface. PhysChemComm 2(9):41–44CrossRefGoogle Scholar
  73. 73.
    Haq S, Liu N, Humblot V, Jansen APJ, Raval R (2009) Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces. Nat Chem 1(5):409–414CrossRefPubMedGoogle Scholar
  74. 74.
    Roth C, Passerone D, Ernst KH (2010) Pasteur’s quasiracemates in 2D: chiral conflict between structurally different enantiomers induces single-handed enantiomorphism. Chem Commun 46(45):8645–8647CrossRefGoogle Scholar
  75. 75.
    Seibel J, Allemann O, Siegel JS, Ernst KH (2013) Chiral conflict among different helicenes suppresses formation of one enantiomorph in 2D crystallization. J Am Chem Soc 135(20):7434–7437CrossRefPubMedGoogle Scholar
  76. 76.
    Kipping F, Pope W (1898) LXIII.—Enantiomorphism J Chem Soc 73:606–617CrossRefGoogle Scholar
  77. 77.
    Kondepudi DK, Kaufman RJ, Singh N (1990) Chiral symmetry breaking in sodium-chlorate crystallization. Science 250(4983):975–976CrossRefPubMedGoogle Scholar
  78. 78.
    McBride JM, Carter RL (1991) Spontaneous resolution by stirred crystallization. Angew Chem Int Ed Engl 30(3):293–295CrossRefGoogle Scholar
  79. 79.
    Gernez MD (1867) Séparation des tartrates gauches et des tartrates droits, À L’aide Des solutions sursaturées. J Pharm Chim 4(5):111–115Google Scholar
  80. 80.
    Viedma C (2005) Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling. Phys Rev Lett 94(6):065504CrossRefPubMedGoogle Scholar
  81. 81.
    Noorduin WL, Meekes H, van Enckevort WJP, Millemaggi A, Leeman M, Kaptein B, Kellogg RM, Vlieg E (2008) Complete deracemization by attrition-enhanced ostwald ripening elucidated. Angew Chem Int Ed 47(34):6445–6447CrossRefGoogle Scholar
  82. 82.
    Saito Y, Hyuga H (2008) Chiral crystal growth under grinding. J Phys Soc Jpn 77(11):113001CrossRefGoogle Scholar
  83. 83.
    Liesegang RE (1911) Zur übersättigungstheorie einiger scheinbar rhythmischer reaktionen. Z Phys Chem 75:371–373Google Scholar
  84. 84.
    McBride JM, Tully JC (2008) Physical chemistry—did life grind to a start? Nature 452(7184):161–162CrossRefPubMedGoogle Scholar
  85. 85.
    Noorduin WL, van Enckevort WJP, Meekes H, Kaptein B, Kellogg RM, Tully JC, McBride JM, Vlieg E (2010) The driving mechanism behind attrition-enhanced deracemization. Angew Chem Int Ed 49(45):8435–8438CrossRefGoogle Scholar
  86. 86.
    Viedma C, McBride JM, Kahr B, Cintas P (2013) Enantiomer-specific oriented attachment: formation of macroscopic homochiral crystal aggregates from a racemic system. Angew Chem Int Ed 52(40):10545–10548CrossRefGoogle Scholar
  87. 87.
    De Yoreo JJ, Gilbert P, Sommerdijk N, Penn RL, Whitelam S, Joester D, Zhang HZ, Rimer JD, Navrotsky A, Banfield JF, Wallace AF, Michel FM, Meldrum FC, Colfen H, Dove PM (2015) Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349(6247):aaa6760CrossRefPubMedGoogle Scholar
  88. 88.
    Viedma C, Cuccia LA, McTaggart A, Kahr B, Martin AT, McBride JM, Cintas P (2016) Oriented attachment by enantioselective facet recognition in millimeter-sized gypsum crystals. Chem Commun 52(78):11673–11676CrossRefGoogle Scholar
  89. 89.
    El-Hachemi Z, Crusats JQ, Ribo JM, Veintemillas-Verdaguer S (2009) Spontaneous transition toward chirality in the NaClO3 crystallization in boiling solutions. Cryst Growth Des 9(11):4802–4806CrossRefGoogle Scholar
  90. 90.
    El-Hachemi Z, Crusats J, Ribo JM, McBride JM, Veintemillas-Verdaguer S (2011) Metastability in supersaturated solution and transition towards chirality in the crystallization of NaClO3. Angew Chem Int Ed 50(10):2359–2363CrossRefGoogle Scholar
  91. 91.
    Weissbuch I, Leiserowitz L, Lahav M (2005) Stochastic “mirror symmetry breaking” via self-assembly, reactivity and amplification of chirality: relevance to abiotic conditions. In: Walde P (ed) Prebiotic chemistry: from simple amphiphiles to protocell models. vol 259, Springer, Berlin, pp 123–165CrossRefGoogle Scholar
  92. 92.
    Frank P, Bonner W, Zare R (2001) On one hand but not the other: the challenge of the origin and survival of homochirality in prebiotic chemistry. Wiley, WeinheimGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA
  2. 2.EmpaSwiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  3. 3.Department of ChemistryUniversity of ZurichZurichSwitzerland

Personalised recommendations