Skip to main content
Log in

Experimental and Molecular Simulation Studies on Ethanol Conversion to Propylene Over Different Zeolite Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The selectivity of propylene was constant at 20% during continuous experiments for 8 h on HZSM-5. However, HLEV catalysts produced almost no C3H6 after 2 h. The rapid change is probably due to coke deposition. Excessive adsorption of ethanol on HLEV leads to coke deposition. Lower adsorption energy of ethylene on HLEV makes ethylene desorb quickly after formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ren T, Patel M, Blok K (2006) Energy 31:425–451

    Article  CAS  Google Scholar 

  2. Parajuli R, Knudsen MT, Birkved M, Djomo SN, Corona A, Dalgaard T (2017) Sci Total Environ 598:497–512

    Article  CAS  PubMed  Google Scholar 

  3. Xia W, Wang F, Mu X, Chen K, Takahashi A, Nakamura I, Fujitani T (2017) Catal Commun 91:62–66

    Article  CAS  Google Scholar 

  4. Huangfu J, Mao D, Zhai X, Guo Q (2016) Appl Catal A 520:99–104

    Article  CAS  Google Scholar 

  5. Xia W, Wang F, Mu X, Chen K, Takahashi A, Nakamura I, Fujitani T (2017) Catal Commun 90:10–13

    Article  CAS  Google Scholar 

  6. Sousa ZSB, Veloso CO, Henriques CA, Silva VTD (2016) J Mol Catal A 422:266–274

    Article  CAS  Google Scholar 

  7. Ramasamy KK, Zhang H, Sun J, Wang Y (2014) Catal Today 238:103–110

    Article  CAS  Google Scholar 

  8. Song Z, Liu W, Chen C, Takahashi A, Fujitani T (2013) React Kinet Mech Catal 109:221–231

    Article  CAS  Google Scholar 

  9. Li X, Kant A, He Y, Thakkar HV, Atanga MA, Rezaei F, Ludlow DK, Rownaghi AA (2016) Catal Today 276:62–77

    Article  CAS  Google Scholar 

  10. Bhawe Y, Moliner-Marin M, Lunn JD, Liu Y, Malek A, Davis M (2012) ACS Catal 2:2490–2495

    Article  CAS  Google Scholar 

  11. Venkatathri N, Yoo JW (2008) Appl Catal A 340:265–270

    Article  CAS  Google Scholar 

  12. Inoue T, Itakura M, Jon H, Oumi Y, Takahashi A, Fujitani T, Sano T (2009) Microporous Mesoporous Mater 122:149–154

    Article  CAS  Google Scholar 

  13. Klemm E, Wang J, Emig G (1998) Microporous Mesoporous Mater 26:11–21

    Article  CAS  Google Scholar 

  14. Navarro MV, Puértolas B, García T, Murillo R, Mastral AM, Varela-Gandía FJ, Lozano-Castelló D, Cazorla-Amorós D, Bueno-López A (2010) Appl Surf Sci 256:5292–5297

    Article  CAS  Google Scholar 

  15. Hansen N, Jakobtorweihen S, Keil FJ (2005) J Chem Phy 122:164705

    Article  CAS  Google Scholar 

  16. Jo D, Hong SB, Camblor MA (2015) ACS Catal 5:2270–2274

    Article  CAS  Google Scholar 

  17. Beerdsen E, Dubbeldam D, Smit B, Vlugt TJH, Calero S (2003) J Phy Chem B 107:12088–12096

    Article  CAS  Google Scholar 

  18. Xin H, Li X, Fang Y, Yi X, Hu W, Chu Y, Zhang F, Zheng A, Zhang H, Li X (2014) J Catal 312:204–215

    Article  CAS  Google Scholar 

  19. Huang Y, Dong X, Li M, Yu Y (2014) Catal Sci Technol 5:1093–1105

    Article  CAS  Google Scholar 

  20. Li X, Sun Q, Li Y, Wang N, Lu J, Yu J (2014) J Phys Chem C 118:24935–24940

    Article  CAS  Google Scholar 

  21. Sukrat K, Tunega D, Aquino AJA, Lischka H, Parasuk V (2012) Theor Chem Acc 131:1232–1243

    Article  CAS  Google Scholar 

  22. Delley B (1998) J Quan Chem 69:423–433

    Article  CAS  Google Scholar 

  23. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  24. Aguayo AT, Gayubo AG, Tarrío AM, Atutxa A, Bilbao J (2002) J Chem Technol Biotechnol 77:211–216

    Article  CAS  Google Scholar 

  25. Silvestrelli PL (2004) Surf Sci 552:17–26

    Article  CAS  Google Scholar 

  26. Qin Y, Cui M, Ye MZ (2016) Appl Surf Sci 379:497–504

    Article  CAS  Google Scholar 

  27. Castro TP, Silveira EB, Rabelo-Neto RC, Borges LEP, Noronha FB (2018) Catal Today 299:251–262

    Article  CAS  Google Scholar 

  28. Guadix-Montero S, Alshammari H, Dalebout R, Nowicka E, Morgan DJ, Shaw G, He Q, Sankar M (2017) Appl Catal A 546:58–66

    Article  CAS  Google Scholar 

  29. Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Green Chem 16:748–776

    Article  CAS  Google Scholar 

  30. Xia W, Chen K, Takahashi A, Li X, Mu X, Han C, Liu L, Nakamura I, Fujitani T (2016) Catal Commun 73:27–33

    Article  CAS  Google Scholar 

  31. Smit B, Maesen TLM (2008) Chem Rev 108:4125–4184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is a project sponsored by the National Natural Science Foundation of China (Grant 21406269), Shandong Provincial Natural Science Foundation, China (Grant ZR2014BQ012), Scientific Research Foundation for Returned Scholars, Ministry of Education of China (K1504051C), Shandong Provincial Key Research Program (Grant: 2015GSF121017), the Fundamental Research Funds for the Central Universities (15CX05013A) and the International Cooperation and Exchange Fund, China University of Petroleum (East China) (UPCGJ2018010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Xia, W., Mu, X. et al. Experimental and Molecular Simulation Studies on Ethanol Conversion to Propylene Over Different Zeolite Catalyst. Catal Lett 148, 1768–1774 (2018). https://doi.org/10.1007/s10562-018-2375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2375-7

Keywords

Navigation