Skip to main content

Advertisement

Log in

Highly Dispersed Surfactant-Free Amorphous NiCoB Nanoparticles and Their Remarkable Catalytic Activity for Hydrogen Generation from Ammonia Borane Dehydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The effective storage and generation of hydrogen at room temperature is an important issue in many areas, including alternative energy. In this work, NiCoB nanoalloys with high B contents, clean surfaces, and good dispersions are synthesized by an in-situ reduction method. The NiCoB catalyst with high B content exhibits significantly more excellent catalytic activity for hydrogen generation from the hydrolytic of ammonia borane than NiCoB catalyst with low B content. The remarkable catalytic performance is attributed to the strong electronic interaction between the incorporated B and the active metal sites of Co and Ni, the clean surface and good dispersion of the catalyst. Basically, the physical and catalytic properties of the catalyst take advantage of the selection of reductant used during the in-situ synthesis of the NiCoB nanoalloys. This work demonstrates that this facile synthetic method is a promising avenue for the rational design of various B incorporated metal catalysts for hydrogen energy exploitation, metal/air batteries, and electrochemical sensors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schultz MG, Diehl T, Brasseur GP, Zittel W (2003) Science 302:624–627

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZL, Yan JM, Ping Y, Wang HL, Zheng WT, Jiang Q (2013) Angew Chem Int Ed 52:4406–4409

    Article  CAS  Google Scholar 

  3. Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2008) Nat Mater 7:138–141

    Article  CAS  PubMed  Google Scholar 

  4. Yadav M, Xu Q (2012) Energy Environ Sci 5:9698–9725

    Article  CAS  Google Scholar 

  5. Mori K, Tanaka H, Dojo M, Yoshizawa K, Yamashita H (2015) Chem Eur J 21:12085–12092

    Article  CAS  PubMed  Google Scholar 

  6. Kim SK, Han WS, Kim TJ, Kim TY, Nam SW, Mitoraj M, Piekoś Ł, Michalak A, Hwang SJ, Kang SO (2010) J Am Chem Soc 132:9954–9955

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Luo W, Cheng GZ (2013) Catal Lett 143:873–880

    Article  CAS  Google Scholar 

  8. Hamilton CW, Baker RT, Staubitz A, Manners I (2009) Chem Soc Rev 38:279–293

    Article  CAS  PubMed  Google Scholar 

  9. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H (2015) Adv Mater 27:4616–4621

    Article  CAS  PubMed  Google Scholar 

  10. Yao Q, Lu Z, Huang W, Chen X, Zhu J (2016) J Mater Chem A 4:8579–8583

    Article  CAS  Google Scholar 

  11. Sun D, Mazumder V, Metin Ö, Sun S (2012) ACS Catal 2:1290–1295

    Article  CAS  Google Scholar 

  12. Kim SK, Kim TJ, Kim TY, Lee G, Park JT, Nam SW, Kang SO (2012) Chem Commun 48:2021–2023

    Article  CAS  Google Scholar 

  13. Shrestha RP, Diyabalanage HVK, Semelsberger TA, Ott KC, Burrell AK (2009) Int J Hydrogen Energy 34:2616–2621

    Article  CAS  Google Scholar 

  14. Zhang J, Chen C, Chen S, Hu Q, Gao Z, Li Y, Qin Y (2017) Catal Sci Technol 7:322–329

    Article  CAS  Google Scholar 

  15. Akbayrak S, Őzkar S (2012) ACS Appl Mater Interfaces 4:6302–6310

    Article  CAS  PubMed  Google Scholar 

  16. Akbayrak S, Erdek P, Őzkar S (2013) Appl Catal B 142–143:187–195

    Article  CAS  Google Scholar 

  17. Shang NZ, Feng C, Gao ST, Wang C (2016) Int J Hydrogen Energy 41:944–950

    Article  CAS  Google Scholar 

  18. Cao N, Luo W, Cheng G (2013) Int J Hydrogen Energy 38:11964–11972

    Article  CAS  Google Scholar 

  19. Yan JM, Zhang XB, Han S, Shioyama H, Xu Q (2008) Angew Chem 120:2319–2321

    Article  Google Scholar 

  20. Wang HL, Yan JM, Wang ZL, Jiang Q (2012) Int J Hydrogen Energy 37:10229–10235

    Article  CAS  Google Scholar 

  21. Nabid MR, Bide Y, Dastar F (2015) Catal Lett 145:1798–1807

    Article  CAS  Google Scholar 

  22. Jiang HL, Akita T, Xu Q (2011) Chem Commun 47:10999–11001

    Article  CAS  Google Scholar 

  23. Qiu F, Li L, Liu G, Wang Y, Wang Y, An C, Xu Y, Xu C, Wang Y, Jiao L, Yuan H (2013) Int J Hydrogen Energy 38:3241–3249

    Article  CAS  Google Scholar 

  24. Rakap M, Kalu EE, Özkar S (2012) J Power Sources 210:184–190

    Article  CAS  Google Scholar 

  25. Zou Y, Cheng J, Wang Q, Xiang C, Chu H, Qiu S, Zhang H, Xu F, Liu S, Tang C, Sun L (2015) Int J Hydrogen Energy 40:13423–13430

    Article  CAS  Google Scholar 

  26. Lu AH, Salabas EL, Schuth F (2007) Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  27. Pei Y, Zhou G, Luan N, Zong B, Qiao M, Tao F (2012) Chem Soc Rev 41:8140–8162

    Article  CAS  PubMed  Google Scholar 

  28. Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C (2013) Chem Rev 113:7981–8065

    Article  CAS  PubMed  Google Scholar 

  29. Greenwood N, Parish R, Thornton P (1966) Q Rev 20:441–464

    Article  CAS  Google Scholar 

  30. He D, Zhang L, He D, Zhou G, Lin Y, Deng Z, Hong X, Wu Y, Chen C, Li Y (2016) Nat Commun 7:12362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:4516–4520

    Article  Google Scholar 

  32. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J, Miyata S (2010) J Phys Chem C 114:8933–8937

    Article  CAS  Google Scholar 

  33. Wang J, Li W, Wen Y, Gu L, Zhang Y (2015) Adv Energy Mater 5:1401879

    Article  CAS  Google Scholar 

  34. Jiang K, Xu K, Zou S, Cai WB (2014) J Am Chem Soc 136:4861–4864

    Article  CAS  PubMed  Google Scholar 

  35. Wang ZL, Yan JM, Wang HL, Ping Y, Jiang Q (2012) Sci Rep 2:598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin M, Zhang H, Xie Z, Xia Y (2012) Energy Environ Sci 5:6352–6357

    Article  CAS  Google Scholar 

  37. Mazumder V, Sun S (2009) J Am Chem Soc 131:4588–4589

    Article  CAS  PubMed  Google Scholar 

  38. Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X (2011) J Am Chem Soc 133:3693–3695

    Article  CAS  PubMed  Google Scholar 

  39. Yan JM, Zhang XB, Han S, Shioyama H, Xu Q (2009) Inorg Chem 48:7389–7393

    Article  CAS  PubMed  Google Scholar 

  40. Patel N, Fernandes R, Gupta S, Edla R, Kothari DC, Miotello A (2013) Appl Catal B 140–141:125–132

    Article  CAS  Google Scholar 

  41. Wang Y, Cheng R, Wen Z, Zhao L (2012) Chem Eng J 181–182:823–827

    Article  CAS  Google Scholar 

  42. Yan JM, Zhang XB, Akita T, Haruta M, Xu Q (2010) J Am Chem Soc 132:5326–5327

    Article  CAS  PubMed  Google Scholar 

  43. Cao H, Suib SL (1994) J Am Chem Soc 116:5334–5342

    Article  CAS  Google Scholar 

  44. Deng JF, Li HX, Wang WJ (1999) Catal Today 51:113–125

    Article  CAS  Google Scholar 

  45. Wang HX, Zhou LM, Han M, Tao ZL, Cheng FY, Chen J (2015) J Alloy Compd 651:382–388

    Article  CAS  Google Scholar 

  46. Qiu FY, Dai YL, Li L, Xu CC, Huang YN, Chen CC, Wang YJ, Jiao LF, Yuan HT (2014) Int J Hydrogen Energy 39:436–441

    Article  CAS  Google Scholar 

  47. Zhang H, Wang XF, Chen CC, An CH, Xu YA, Huang YA, Zhang QY, Wang YJ, Jiao LF, Yuan HT (2015) Int J Hydrogen Energy 40:12253–12261

    Article  CAS  Google Scholar 

  48. Meng XY, Yang L, Cao N, Du C, Hu K, Su J, Luo W, Cheng GZ (2014) ChemPlusChem 79:325–332

    Article  CAS  Google Scholar 

  49. Li J, Zhu QL, Xu Q (2015) Catal Sci Technol 5:525–530

    Article  CAS  Google Scholar 

  50. Gao DD, Zhang YH, Zhou LQ, Yang KZ (2018) Appl Surf Sci 427:114–122

    Article  CAS  Google Scholar 

  51. Liu Y, Zhang J, Guan HJ, Zhao YF, Yang JH, Zhang B (2018) Appl Surf Sci 427:106–113

    Article  CAS  Google Scholar 

  52. Liu PL, Gu XJ, Kang K, Zhang H, Cheng J, Su HQ (2017) ACS Appl Mater Interfaces 9(12):10759–10767

    Article  CAS  PubMed  Google Scholar 

  53. Bulut A, Yurderi M, Ertas İE, Celebi M, Kaya M, Zahmakiran M (2016) Appl Catal B 180:121–129

    Article  CAS  Google Scholar 

  54. Zhang H, Gu X, Liu P, Song J, Cheng J, Su H (2017) J Mater Chem A 5:2288–2296

    Article  CAS  Google Scholar 

  55. Xia BQ, Liu C, Wu H, Luo W, Cheng GZ (2015) Int J Hydrogen Energy 40:16391–16397

    Article  CAS  Google Scholar 

  56. Zahmakiran M, Özkar S (2009) Langmuir 25:2667–2678

    Article  CAS  PubMed  Google Scholar 

  57. Jiang HL, Xu Q (2011) J Mater Chem 21:13705–13725

    Article  CAS  Google Scholar 

  58. He L, Huang Y, Wang A, Wang X, Chen X, Delgado JJ, Zhang T (2012) Angew Chem Int Ed 51:6191–6195

    Article  CAS  Google Scholar 

  59. Tong DG, Tang DM, Chu W, Gu GF, Wu P (2013) J Mater Chem A 1:6425–6432

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51601018, 51608050, 51671035, 51605042); Jilin Province Science and Technology Development Project (20170520122JH, 20150520020JH); and Science and Technology Research Project of the Education Department of Jilin Province (JJKH20170549KJ, 2016327).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongli Wang or Zhankui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, D., Wang, L. et al. Highly Dispersed Surfactant-Free Amorphous NiCoB Nanoparticles and Their Remarkable Catalytic Activity for Hydrogen Generation from Ammonia Borane Dehydrogenation. Catal Lett 148, 1739–1749 (2018). https://doi.org/10.1007/s10562-018-2374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2374-8

Keywords

Navigation