Skip to main content
Log in

Pore Size Architecture of Hexagonal Mesoporous Carbon Nitride (HMCN) for Metal-Free Synthesis of p-Hydroxycinnamic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The nanochannels of hexagonal mesoporous carbon nitride (HMCN) base catalytic materials were architected with diameter of 4.7, 5.9, and 7.1 nm using SBA-15 hard templates and these catalysts were represented as HMCN (4.7), HMCN (5.9), and HMCN (7.1), respectively. These materials were characterized by XRD, N2 sorption, FESEM, EDAX, HRTEM, FTIR and DR UV–Vis spectroscopy. The influence of HMCN catalysts with different pore sizes on p-hydroxycinnamic acid synthesis was investigated in metal/pyridine-free reaction conditions. The catalytic experimental results of HMCN (5.9) catalyst with optimum pore diameter of 5.9 nm showed an excellent catalytic performance of 94.5% p-hydroxybenzaldehyde conversion with 100% p-hydroxycinnamic acid selectivity within 60 min in comparison with other two catalysts, namely HMCN (4.7) and HMCN (7.1).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9
Scheme 3
Scheme 4
Fig. 10

Similar content being viewed by others

References

  1. De P, Baltas M, Bedos-Belval F (2011) Curr Med Chem 11:672–703

    Google Scholar 

  2. Pontiki E, Hadjipavlou-Litina D, Litinas K, Geromichalos G (2014) Molecules 7:9655–9674

    Article  CAS  Google Scholar 

  3. Compton DL, Isbell TA, Harry-O’kuru RE (2007) United States patent US 7,163,673

  4. Ma Y, Kosinska-Cagnazzo A, Kerr WL, Amarowicz R, Swanson RB, Pegg RB (2014) J Agric Food Chem 62:11488–11504

    Article  CAS  PubMed  Google Scholar 

  5. Beato VM, Orgaz F, Mansilla F, Montano A (2011) Plant Foods Hum Nutr 66:218–223

    Article  CAS  PubMed  Google Scholar 

  6. Pawar HS, Wagh AS, Lali AM (2016) J Chem 6:4962–4968

    Google Scholar 

  7. Karchgaudhuri N, De A, Mitra AK (2002) J Chem Res 4:180–183

    Article  Google Scholar 

  8. Gupta M, Gupta R, Anand M (2009) Beilstein ‎J Org Chem 1:68

    Google Scholar 

  9. Zolfigol MA, Ayazi-Nasrabadi R, Baghery S (2015) RSC Adv 88:71942–71954

    Article  CAS  Google Scholar 

  10. Verdía P, Santamarta F, Tojo E (2011) Molecules 6:4379–4388

    Article  CAS  Google Scholar 

  11. Ohtaka A, Okagaki T, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R (2015) Catalysts 1:106–118

    Article  CAS  Google Scholar 

  12. Goel V (2012) Orient J Chem 4:1725–1728

    Article  Google Scholar 

  13. Lakhi KS, Baskar AV, Zaidi JS, Al-Deyab SS, El-Newehy M, Choy JH, Vinu A (2015) RSC Adv 50:40183–40192

    Article  CAS  Google Scholar 

  14. Mane GP, Dhawale DS, Anand C, Ariga K, Ji Q, Wahab MA, Mori T, Vinu A (2013) J Mater Chem A 8:2913–2920

    Article  CAS  Google Scholar 

  15. Alhajri NS, Yoshida H, Anjum DH, Garcia-Esparza AT, Kubota J, Domen K, Takanabe K (2013) J Mater Chem A 40:12606–12616

    Article  CAS  Google Scholar 

  16. Li X, Xu C, Zhao K, Wang Y, Pan L (2016) RSC Adv 16:13572–13580

    Article  CAS  Google Scholar 

  17. Datta KK, Reddy BV, Ariga K, Vinu A (2010) Angew Chem Int Ed 34:5961–5965

    Article  CAS  Google Scholar 

  18. Xu J, Chen T, Wang X, Xue B, Li YX (2014) Catal Sci Technol 7:2126–2133

    Article  CAS  Google Scholar 

  19. Xu J, Long KZ, Chen T, Xue B, Li YX, Cao Y (2013) Catal Sci Technol 12:3192–3199

    Article  CAS  Google Scholar 

  20. Vinu A (2008) Adv Funct Mater 5:816–827

    Article  CAS  Google Scholar 

  21. Zhao Z, Dai Y, Lin J, Wang G (2014) Chem Mater 10:3151–3161

    Article  CAS  Google Scholar 

  22. Lee SC, Lintang HO, Endud S, Yuliati L (2014) Adv Mater Res 925:130–134

    Article  CAS  Google Scholar 

  23. Choudary BM, Lakshmi Kantama M, Sreekantha P, Bandopadhyaya T, Figuerasb F, Tuelb A (1999) J Mol Catal A 142:361–365

    Article  CAS  Google Scholar 

  24. Yokoi T, Yoshitake H, Yamada T, Kubota Y, Tatsumi T (2006) J Mater Chem 16:1125–1135

    Article  CAS  Google Scholar 

  25. Mcnulty J, Steere IJA, Wolf S (1998) Tetrahedron Lett 39:8013–8016

    Article  CAS  Google Scholar 

  26. Mitra AK, Karchaudhuri N (1999) Synth Commun 29:573–581

    Article  CAS  Google Scholar 

  27. Qian Y, Zhang H-J, Zhang H, Xu C, Zhao J, Zhu H-L (2010) Bioorg Med Chem 18:4991–4996

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chandrasekar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 694 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elamathi, P., Chandrasekar, G. Pore Size Architecture of Hexagonal Mesoporous Carbon Nitride (HMCN) for Metal-Free Synthesis of p-Hydroxycinnamic Acid. Catal Lett 148, 1758–1767 (2018). https://doi.org/10.1007/s10562-018-2373-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2373-9

Keywords

Navigation