Catalysis Letters

, Volume 148, Issue 6, pp 1579–1588 | Cite as

Hydrodenitrogenation of Quinoline and Decahydroquinoline Over a Surface Nickel Phosphosulfide Phase

  • Song Tian
  • Xiang Li
  • Anjie Wang
  • Yongying Chen
  • Huateng Li
  • Yongkang Hu


The hydrodenitrogenation (HDN) of quinolone (Q) and decahydroquinoline (DHQ) over a Ni2P catalyst prepared by the reduction of a conventional phosphate precursor and a surface nickel phosphosulfide phase (Ni2P–S) obtained by the reduction of Ni2P2S6 were studied. A reaction network of the HDN of Q over Ni2P was proposed. Both the hydrogenation and C–N bond cleavage activities of Ni2P were enhanced after the introduction of sulfur. The surface sulfur species of Ni2P–S changed significantly after the HDN of DHQ. The thiolate or thiol species were detected as the major sulfur-containing species in the surface of the spent Ni2P–S catalyst.

Graphical Abstract


Ni2Nickel phosphosulfide phase Quinoline Decahydroquinoline Hydrodenitrogenation Hydrogenation C–N bond cleavage 



This work was financially supported by the Natural Science Foundation of China (21473017 and 21673029), the United Funds of NSFC-Liaoning (U1508205), and the Liaoning Provincial Natural Science Foundation of China (201602158).

Supplementary material

10562_2018_2370_MOESM1_ESM.doc (841 kb)
Supplementary material 1 (DOC 841 KB)


  1. 1.
    Oyama ST, Gott T, Zhao H, Lee YK (2009) Transition metal phosphide hydroprocessing catalysts: a review. Catal Today 143:94–107CrossRefGoogle Scholar
  2. 2.
    Oyama ST, Clark P, Wang X, Shido T, Iwasawa Y, Hayashi S, Ramallo-Lopez JM, Requejo FG (2002) Structural characterization of tungsten phosphide (WP) hydrotreating catalysts by X-ray absorption spectroscopy and nuclear magnetic resonance spectroscopy. J Phys Chem B 106:1913–1920CrossRefGoogle Scholar
  3. 3.
    Lee YK, Oyama ST (2017) Sulfur resistant nature of Ni2P catalyst in deep hydrodesulfurization. Appl Catal A 548:103–113CrossRefGoogle Scholar
  4. 4.
    Wang X, Clark P, Oyama ST (2002) Synthesis, characterization, and hydrotreating activity of several iron group transition metal phosphides. J Catal 208:321–331CrossRefGoogle Scholar
  5. 5.
    Cho A, Kim H, Iino A, Takagaki A, Oyama ST (2014) Kinetic and FTIR studies of 2-methyltetrahydrofuran hydrodeoxygenation on Ni2P/SiO2. J Catal 318:151–161CrossRefGoogle Scholar
  6. 6.
    Peroni M, Lee I, Huang X, Baráth E, Gutiérrez OY, Lercher JA (2017) Deoxygenation of palmitic acid on unsupported transition-metal phosphides. ACS Catal 7:6331–6341CrossRefGoogle Scholar
  7. 7.
    Feitosa LF, Berhault G, Laurenti D, Davies TE, Da Silva VT (2016) Synthesis and hydrodeoxygenation activity of Ni2P/C—effect of the palladium salt on lowering the nickel phosphide synthesis temperature. J Catal 340:154–165CrossRefGoogle Scholar
  8. 8.
    Chen J, Shi H, Li L, Li K (2014) Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts. Appl Catal B 144:870–884CrossRefGoogle Scholar
  9. 9.
    Xin H, Guo K, Li D, Yang H, Hu C (2016) Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Appl Catal B 187:375–385CrossRefGoogle Scholar
  10. 10.
    Carenco S, Leyva-Pérez A, Concepción P, Boissière C, Mézailles N, Sanchez C, Corma A (2012) Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 7:21–28CrossRefGoogle Scholar
  11. 11.
    Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270CrossRefGoogle Scholar
  12. 12.
    Phillips DC, Sawhill SJ, Self R, Bussell ME (2002) Synthesis, characterization, and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts. J Catal 207:266–273CrossRefGoogle Scholar
  13. 13.
    Rodriguez JA, Kim J-Y, Jonathan H, Sawhill C, Stephanie J, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276–6285CrossRefGoogle Scholar
  14. 14.
    Sawhill SJ, Phillips DC, Bussell ME (2003) Thiophene hydrodesulfurization over supported nickel phosphide catalysts. J Catal 215:208–219CrossRefGoogle Scholar
  15. 15.
    Sun F, Wu W, Wu Z, Guo J, Wei Z, Yang Y, Jiang Z, Tian F, Li C (2004) Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni–Mo–P catalysts. J Catal 228:298–310CrossRefGoogle Scholar
  16. 16.
    Wu Z, Sun F, Wu W, Feng Z, Liang C, Wei Z, Li C (2004) On the surface sites of MoP/SiO2 catalyst under sulfiding conditions: IR spectroscopy and catalytic reactivity studies. J Catal 222:41–52CrossRefGoogle Scholar
  17. 17.
    Bai J, Li X, Wang A, Prins R, Wang Y (2012) Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. J Catal 287:161–169CrossRefGoogle Scholar
  18. 18.
    Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437CrossRefGoogle Scholar
  19. 19.
    Li X, Tian S, Wang A, Prins R, Li C, Chen Y (2017) XPS study of a bulk WP hydrodesulfurization catalyst. J Catal 352:557–561CrossRefGoogle Scholar
  20. 20.
    Kawai T, Bando K, Lee YK, Oyama ST, Chun W, Asakura K (2006) EXAFS measurements of a working catalyst in the liquid phase: an in situ study of a Ni2P hydrodesulfurization catalyst. J Catal 241:20–24CrossRefGoogle Scholar
  21. 21.
    Nelson AE, Sun M, Junaid ASM (2006) On the structure and composition of the phosphosulfide overlayer on Ni2P at hydrotreating conditions. J Catal 241:180–188CrossRefGoogle Scholar
  22. 22.
    Bai J, Li X, Wang A, Prins R, Wang Y (2013) Different role of H2S and dibenzothiophene in the incorporation of sulfur in the surface of bulk MoP during hydrodesulfurization. J Catal 300:197–200CrossRefGoogle Scholar
  23. 23.
    Prins R, Bussell ME (2012) Metal phosphides: preparation, characterization and catalytic reactivity. Catal Lett 142:1413–1436CrossRefGoogle Scholar
  24. 24.
    Tian S, Li X, Wang A, Prins R, Chen Y, Hu Y (2016) Facile preparation of Ni2P with a sulfur-containing surface layer by low-temperature reduction of Ni2P2S6. Angew Chem Int Ed 55:4030–4034CrossRefGoogle Scholar
  25. 25.
    Fincher T, LeBret G, Cleary DA (1998) Single-crystal structure determination of Na4P2S6·6H2O. J Solid State Chem 141:274–281CrossRefGoogle Scholar
  26. 26.
    Wang A, Ruan L, Teng Y, Li X, Lu M, Ren J, Wang Y, Hu Y (2005) Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts. J Catal 229:314–321CrossRefGoogle Scholar
  27. 27.
    Levenspiel O (1998) Chemical reaction engineering. Wiley, New YorkGoogle Scholar
  28. 28.
    Prins R (2001) Catalytic hydrodenitrogenation. Adv Catal 46:399–464Google Scholar
  29. 29.
    Hrabar A, Hein J, Gutiérrez OY, Lercher JA (2011) Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/γ-Al2O3 sulfide catalysts. J Catal 281:325–338CrossRefGoogle Scholar
  30. 30.
    Gutiérrez OY, Hrabar A, Hein J, Yu Y, Han J, Lercher JA (2012) Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni–MoS2/γ-Al2O3. J Catal 295:155–168CrossRefGoogle Scholar
  31. 31.
    Jian M, Prins R (1998) Mechanism of the hydrodenitrogenation of quinoline over NiMo(P)/Al2O3 catalysts. J Catal 179:18–27CrossRefGoogle Scholar
  32. 32.
    Wang Y, Sun Z, Wang A, Ruan L, Lu M, Ren J, Li X, Li C, Hu Y, Yao P (2004) Kinetics of hydrodesulfurization of dibenzothiophene catalyzed by sulfided Co–Mo/MCM-41. Ind Eng Chem Res 43:2324–2329CrossRefGoogle Scholar
  33. 33.
    Duan X, Teng Y, Wang A, Kogan VM, Li X, Wang Y (2009) Role of sulfur in hydrotreating catalysis over nickel phosphide. J Catal 261:232–240CrossRefGoogle Scholar
  34. 34.
    Gao Q, Chen P, Zhang Y, Tang Y (2008) Synthesis and characterization of organic–inorganic hybrid GeOx/ethylenediamine nanowires. Adv Mater 20:1837–1842CrossRefGoogle Scholar
  35. 35.
    Gammon WJ, Kraft O, Reilly AC, Holloway BC (2003) Experimental comparison of N (1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds. Carbon 41:1917–1923CrossRefGoogle Scholar
  36. 36.
    Kulkarni GU, Rao CNR, Roberts MW (1995) Nature of the oxygen species at Ni (1 1 0) and Ni (1 0 0) surfaces revealed by exposure to oxygen and oxygen-ammonia mixtures: evidence for the surface reactivity of O-type species. J Phys Chem 99:3310–3316CrossRefGoogle Scholar
  37. 37.
    Pal J, Ganguly M, Mondal C, Negishi Y, Pal T (2015) Precursor salt assisted syntheses of high-index faceted concave hexagon and nanorod-like polyoxometalates. Nanoscale 7:708–719CrossRefGoogle Scholar
  38. 38.
    Huntley DR (1992) The mechanism of the desulfurization of benzenethiol by nickel (110). J Phys Chem 96:4550–4558CrossRefGoogle Scholar
  39. 39.
    Volmer M, Stratmann M, Viefhaus H (1990) Electrochemical and electron spectroscopic investigations of iron surfaces modified with thiols. Surf Interface Anal 16:278–282CrossRefGoogle Scholar
  40. 40.
    Volmer M, Stratmann M (1992) A surface analytical and an electrochemical study of iron surfaces modified by thiols. Appl Surf Sci 55:19–35CrossRefGoogle Scholar
  41. 41.
    Rota F, Prins R (2001) Role of hydrogenolysis and nucleophilic substitution in hydrodenitrogenation over sulfided NiMo/γ-Al2O3. J Catal 202:195–199CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Prins R (2004) Mechanisms of the hydrodenitrogenation of alkylamines with secondary and tertiary α-carbon atoms on sulfided NiMo/Al2O3. J Catal 222:532–544CrossRefGoogle Scholar
  43. 43.
    Oyama ST, Lee YK (2005) Mechanism of hydrodenitrogenation on phosphides and sulfides. J Phys Chem B 109:2109–2119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Song Tian
    • 1
    • 2
  • Xiang Li
    • 1
    • 2
    • 3
  • Anjie Wang
    • 1
    • 2
    • 3
  • Yongying Chen
    • 1
    • 2
  • Huateng Li
    • 4
  • Yongkang Hu
    • 1
    • 2
  1. 1.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.Liaoning Key Laboratory of Petrochemical Technology and EquipmentsDalian University of TechnologyDalianPeople’s Republic of China
  3. 3.Penn State and Dalian University of Technology Joint Center for Energy Research (JCER)Dalian University of TechnologyDalianPeople’s Republic of China
  4. 4.School of Chemistry and Chemical EngineeringUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations