Advertisement

Catalysis Letters

, Volume 148, Issue 6, pp 1562–1578 | Cite as

Green Synthesis of Palladium Nanoparticles: Applications in Aryl Halide Cyanation and Hiyama Cross-Coupling Reaction Under Ligand Free Conditions

  • Vishal Kandathil
  • Ramesh B. Dateer
  • B. S. Sasidhar
  • Shivaputra A. Patil
  • Siddappa A. Patil
Article
  • 358 Downloads

Abstract

In the current work, palladium nanoparticles (Pd NPs) were prepared from palladium acetate biogenically using the aqueous-ethanolic extract of black pepper (Piper nigrum) and characterized by various analytical techniques like XRD, FE-SEM, EDS, TEM, ATR-IR, UV–Vis spectroscopy, BET, TGA and ICP-OES analysis. The reduction of Pd(II) to Pd(0) is achieved by the action of various phytochemicals present in the black pepper extract like phenols, acids, pellitorine, ethyl piperonyl cyanoacetate, piperine and N-isobutyl-tetradeca-2,4-dienamide. The biosynthesized Pd NPs shown excellent catalytic activity in aryl halide cyanation and Hiyama cross-coupling reactions. Also, less toxic potassium hexacyanoferrate(II) trihydrate was used as cyanide source in aryl halide cyanation and Hiyama cross-coupling was performed under fluoride free condition. Both reactions proceeded well with Pd NPs under ligand free circumstances to give good to excellent yields. The Pd NPs were recovered after each reaction and recycled up to five times in aryl halide cyanation and ten times in Hiyama cross-coupling without considerable loss in the activity.

Graphical Abstract

Green synthesis of palladium nanoparticles: applications in aryl halide cyanation and Hiyama cross-coupling reaction under ligand free conditions.

Keywords

Biogenic synthesis Piper nigrum Palladium nanoparticles Cyanation reaction Hiyama cross-coupling Recycle 

Notes

Acknowledgements

The authors thank Nano Mission, Ministry of Science & Technology, Department of Science & Technology, Government of India, for financial support through the Grant SR/NM/NS-20/2014. Authors also thank SAIF, CUSAT and SAIF, IITM for the analytical support.

Supplementary material

10562_2018_2369_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1568 KB)

References

  1. 1.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  2. 2.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105(4):1025–1102CrossRefPubMedGoogle Scholar
  3. 3.
    McConnell WP, Novak JP, Brousseau LC III, Fuierer RR, Tenent RC, Feldheim DL (2000) J Phys Chem B 104:8925–8930CrossRefGoogle Scholar
  4. 4.
    Dupont J, Fonseca GS, Umpierre AP, Fichtner PFP, Teixeira SR (2002) J Am Chem Soc 124(16):4228–4229CrossRefPubMedGoogle Scholar
  5. 5.
    Narayanan R, El-Sayed MA (2005) J Phys Chem B 109(26):12663–12676CrossRefPubMedGoogle Scholar
  6. 6.
    Ghosh S (2004) Appl Catal A 268(1–2):61–66CrossRefGoogle Scholar
  7. 7.
    Pong B-K, Elim HI, Chong J-X, Ji W, Trout BL, Lee J-Y (2007) J Phys Chem C 111(17):6281–6287CrossRefGoogle Scholar
  8. 8.
    Wu ZG, Munoz M, Montero O (2010) Adv Powder Technol 21(2):165–168CrossRefGoogle Scholar
  9. 9.
    Akhtar MS, Panwar J, Yun Y-S (2013) ACS Sustain Chem Eng 1(6):591–602CrossRefGoogle Scholar
  10. 10.
    Nasrollahzadeh M, Sajjadi M, Maham M, Sajadi SM, Barzinjy AA (2018) Mater Res Bull 102:24–35CrossRefGoogle Scholar
  11. 11.
    Maryami M, Nasrollahzadeh M, Mehdipour E, Sajadi SM (2017) Sep Purif Technol 184:298–307CrossRefGoogle Scholar
  12. 12.
    Nasrollahzadeh M, Issaabadi Z, Sajadi SM (2018) Sep Purif Technol 197:253–260CrossRefGoogle Scholar
  13. 13.
    Khazaei M, Khazaei A, Nasrollahzadeh M, Tahsili MR (2017) Tetrahedron 73(38):5613–5623CrossRefGoogle Scholar
  14. 14.
    Khodadadi B, Bordbar M, Nasrollahzadeh M (2017) J Colloid Interface Sci 490:1–10CrossRefPubMedGoogle Scholar
  15. 15.
    Nasrollahzadeh M, Mohammad Sajadi S (2016) J Colloid Interface Sci 462:243–251CrossRefPubMedGoogle Scholar
  16. 16.
    Atarod M, Nasrollahzadeh M, Sajadi SM (2016) J Colloid Interface Sci 465:249–258CrossRefPubMedGoogle Scholar
  17. 17.
    Iravani S (2011) Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  18. 18.
    Ahmed S, Ahmad M, Swami BL, Ikram S (2016) J Adv Res 7(1):17–28CrossRefPubMedGoogle Scholar
  19. 19.
    Nisha P, Singhal RS, Pandit AB (2009) J Food Eng 92(1):44–49CrossRefGoogle Scholar
  20. 20.
    Ahmad N, Fazal H, Abbasi BH, Farooq S, Ali M, Khan MA (2012) Asian Pac J Trop Biomed 2(3):S1945-S1953CrossRefGoogle Scholar
  21. 21.
    Nahak G, Sahu RK (2011) J Appl Pharm Sci 08:153–157Google Scholar
  22. 22.
    Jirovetz L, Buchbauer G, Ngassoum MB, Geissler M (2002) J Chromatogr A 976(1–2):265–275CrossRefPubMedGoogle Scholar
  23. 23.
    Yu H, Richey RN, Miller WD, Xu J, May SA (2011) J Org Chem 76(2):665–668CrossRefPubMedGoogle Scholar
  24. 24.
    Chatterjee T, Dey R, Ranu BC (2014) J Org Chem 79(12):5875–5879CrossRefPubMedGoogle Scholar
  25. 25.
    Nasrollahzadeh M (2016) Tetrahedron Lett 57(3):337–339CrossRefGoogle Scholar
  26. 26.
    Nasrollahzadeh M, Jaleh B, Fakhri P, Zahraei A, Ghadery E (2015) RSC Adv 5(4):2785–2793CrossRefGoogle Scholar
  27. 27.
    Nasrollahzadeh M, Momeni SS, Sajadi SM (2017) J Colloid Interface Sci 506:471–477CrossRefPubMedGoogle Scholar
  28. 28.
    Sakamoto T, Ohsawa K (1999) J Chem Soc Perkin Trans 1(16):2323–2326CrossRefGoogle Scholar
  29. 29.
    Sundermeier M, Zapf A, Beller M, Sans J (2001) Tetrahedron Lett 42(38):6707–6710CrossRefGoogle Scholar
  30. 30.
    Ushkov AV, Grushin VV (2011) J Am Chem Soc 133(28):10999–11005CrossRefPubMedGoogle Scholar
  31. 31.
    Sundermeier M, Mutyala S, Zapf A, Spannenberg A, Beller M (2003) J Organomet Chem 684(1–2):50–55CrossRefGoogle Scholar
  32. 32.
    Sato N (2002) Tetrahedron Lett 43(36):6403–6404CrossRefGoogle Scholar
  33. 33.
    Schareina T, Zapf A, Cotté A, Gotta M, Beller M (2011) Adv Synth Catal 353(5):777–780CrossRefGoogle Scholar
  34. 34.
    Kim J, Kim HJ, Chang S (2012) Angew Chem Int Ed 51(48):11948–11959CrossRefGoogle Scholar
  35. 35.
    Schareina T, Zapf A, Beller M (2004) Chem Commun 12:1388–1389CrossRefGoogle Scholar
  36. 36.
    Schareina T, Zapf A, Beller M (2004) J Organomet Chem 689(24):4576–4583CrossRefGoogle Scholar
  37. 37.
    Nasrollahzadeh M, Atarod M, Sajadi SM (2017) J Colloid Interface Sci 486:153–162CrossRefPubMedGoogle Scholar
  38. 38.
    Nasrollahzadeh M, Sajadi SM (2016) J Colloid Interface Sci 469:191–195CrossRefPubMedGoogle Scholar
  39. 39.
    Erhardt S, Grushin VV, Kilpatrick AH, Macgregor SA, Marshall WJ, Roe DC (2008) J Am Chem Soc 130(14):4828–4845CrossRefPubMedGoogle Scholar
  40. 40.
    Yeung PY, So CM, Lau CP, Kwong FY (2011) Org Lett 13(4):648–651CrossRefPubMedGoogle Scholar
  41. 41.
    Velmathi S, Leadbeater NE (2008) Tetrahedron Lett 49(32):4693–4694CrossRefGoogle Scholar
  42. 42.
    Senecal TD, Shu W, Buchwald SL (2013) Angew Chem Int Ed 52(38):10035–10039CrossRefGoogle Scholar
  43. 43.
    Chen G, Weng J, Zheng Z, Zhu X, Cai Y, Cai J, Wan Y (2008) Eur J Org Chem 20:3524–3528CrossRefGoogle Scholar
  44. 44.
    Nasrollahzadeh M, Issaabadi Z, Tohidi MM, Sajadi SM (2018) Chem Rec 18(2):165–229CrossRefPubMedGoogle Scholar
  45. 45.
    Khazaei A, Khazaei M, Nasrollahzadeh M (2017) Tetrahedron 73(38):5624–5633CrossRefGoogle Scholar
  46. 46.
    Nasrollahzadeh M, Atarod M, Alizadeh M, Hatamifard A, Sajadi S (2017) Curr Org Chem 21(8):708–749CrossRefGoogle Scholar
  47. 47.
    Nasrollahzadeh M, Sajadi SM (2016) J Colloid Interface Sci 465:121–127CrossRefPubMedGoogle Scholar
  48. 48.
    Nakao Y, Hiyama T (2011) Chem Soc Rev 40(10):4893–4901CrossRefPubMedGoogle Scholar
  49. 49.
    Sore HF, Galloway WR, Spring DR (2012) Chem Soc Rev 41(5):1845–1866CrossRefPubMedGoogle Scholar
  50. 50.
    Denmark SE, Regens CS (2008) Acc Chem Res 41(11):1486–1499CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Denmark SE (2009) J Org Chem 74(8):2915–2927CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Singh NK, Kumar P, Gupta DK, Singh S, Singh VK (2011) Pharm Lett 3:178–182Google Scholar
  53. 53.
    Mondal B, Acharyya K, Howlader P, Mukherjee PS (2016) J Am Chem Soc 138(5):1709–1716CrossRefPubMedGoogle Scholar
  54. 54.
    Sajadi SM, Maham M, Mahmoud SA (2013) J Chem Res 37(10):620–622CrossRefGoogle Scholar
  55. 55.
    Suresh Kumar B, Amali AJ, Pitchumani K (2015) ACS Appl Mater Interfaces 7(41):22907–22917CrossRefPubMedGoogle Scholar
  56. 56.
    Hajipour AR, Karami K, Tavakoli G, Pirisedigh A (2011) J Organomet Chem 696(4):819–824CrossRefGoogle Scholar
  57. 57.
    Magdesieva TV, Nikitin OM, Zolotukhina EV, Vorotyntsev MA (2014) Electrochim Acta 122:289–295CrossRefGoogle Scholar
  58. 58.
    Nasrollahzadeh M, Sajadi SM, Honarmand E, Maham M (2015) New J Chem 39(6):4745–4752CrossRefGoogle Scholar
  59. 59.
    Modak A, Mondal J, Bhaumik A (2012) Green Chem 14(10):2840–2855CrossRefGoogle Scholar
  60. 60.
    Srimani D, Sawoo S, Sarkar A (2007) Org Lett 9(18):3639–3642CrossRefPubMedGoogle Scholar
  61. 61.
    Duran Pachon L, Thathagar MB, Hartl F, Rothenberg G (2006) Phys Chem Chem Phys 8(1):151–157CrossRefPubMedGoogle Scholar
  62. 62.
    Shi S, Zhang Y (2007) J Org Chem 72(15):5927–5930CrossRefPubMedGoogle Scholar
  63. 63.
    Sajiki H, Monguchi Y, Yanase T, Mori S (2012) Synthesis 45(01):40–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Vishal Kandathil
    • 1
  • Ramesh B. Dateer
    • 1
  • B. S. Sasidhar
    • 2
  • Shivaputra A. Patil
    • 3
  • Siddappa A. Patil
    • 1
  1. 1.Centre for Nano and Material SciencesJain UniversityBangaloreIndia
  2. 2.Organic Chemistry SectionNational Institute for Interdisciplinary Science and Technology (CSIR)TrivandrumIndia
  3. 3.Pharmaceutical Sciences Department, College of PharmacyRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations