Catalysis Letters

, Volume 148, Issue 6, pp 1686–1691 | Cite as

CO2 Activation on Cobalt Surface in the Presence of H2O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study

  • Qiang Liu
  • Yong Han
  • Jun Cai
  • Ethan J. Crumlin
  • Yimin Li
  • Zhi Liu


Co-based catalysts for CO2 reduction to liquid fuels have been attracting increasing attention. In this work, the distribution of surface intermediates on a polycrystalline Co foil was investigated by ambient-pressure X-ray photoelectron spectroscopy (APXPS) experiments under near ambient pressure and temperature conditions. The Co surface was partially oxidized, predominantly by carbonates, after CO2 dissociative adsorption. Graphitic carbon deposition on the partially oxidized Co surface was significantly lesser than that on the open surfaces of Cu and Ni under similar reaction conditions. Methoxy, formate, and a bulk carbonate formed upon the co-adsorption of H2O with a surprisingly high methoxy/formate coverage ratio. These results provide valuable mechanistic information for developing highly selective Co-based catalysts for CO2 reduction.

Graphical Abstract


CO2 reduction H2Cobalt APXPS 



The part of this work performed in China was supported by the National Natural Science Foundation of China (11227902) and the Science and Technology Commission of Shanghai Municipality (14520722100). Y.L. would like to acknowledge the support of the “Hundred Talents Program” of the Chinese Academy of Sciences. The work performed at the Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231.

Compliance with Ethical Standards

Conflict of interest

The authors declares that they have no competing interest.


  1. 1.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRefGoogle Scholar
  2. 2.
    Schlögl R (2015) Heterogeneous catalysis. Angew Chem Int Ed 54(11):3465–3520CrossRefGoogle Scholar
  3. 3.
    Wang W, Wang S, Ma X et al (2011) Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev 40(7):3703–3727CrossRefGoogle Scholar
  4. 4.
    Hoekman SK, Broch A, Robbins C et al (2010) CO2 recycling by reaction with renewably-generated hydrogen. Int J Greenh Gas Control 4(1):44–50CrossRefGoogle Scholar
  5. 5.
    Schrag DP (2007) Preparing to Capture Carbon. Science 315(5813):812–813CrossRefGoogle Scholar
  6. 6.
    Wang W-H, Himeda Y, Muckerman JT et al (2015) CO2 hydrogenation to formate and methanol as an alternative to photo-and electrochemical CO2 reduction. Chem Rev 115(23):12936–12973CrossRefGoogle Scholar
  7. 7.
    Gattrell M, Gupta N, Co A (2006) A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem 594(1):1–19CrossRefGoogle Scholar
  8. 8.
    Whipple DT, Kenis PJ (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458CrossRefGoogle Scholar
  9. 9.
    Zhao Y-F, Yang Y, Mims C et al (2011) Insight into methanol synthesis from CO2 hydrogenation on Cu(111): complex reaction network and the effects of H2O. J Catal 281(2):199–211CrossRefGoogle Scholar
  10. 10.
    Nie X, Esopi MR, Janik MJ et al (2013) Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps. Angew Chem Int Ed 52(9):2459–2462CrossRefGoogle Scholar
  11. 11.
    Weatherbee GD, Bartholomew CH (1984) Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru. J Catal 87(2):352–362CrossRefGoogle Scholar
  12. 12.
    Gao S, Lin Y, Jiao X et al (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584):68–71CrossRefGoogle Scholar
  13. 13.
    Li C-S, Melaet G, Ralston WT et al (2015) High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis. Nat Commun 6:6538CrossRefGoogle Scholar
  14. 14.
    Grass ME, Karlsson PG, Aksoy F et al (2010) New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. Rev Sci Instrum 81(5):053106CrossRefGoogle Scholar
  15. 15.
    Jablonski A (2010) NIST Electron Inelastic-Mean-Free-Path Database. National Institute of Standards and Technology, GaithersburgGoogle Scholar
  16. 16.
    Biesinger MC, Payne BP, Grosvenor AP et al (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257(7):2717–2730CrossRefGoogle Scholar
  17. 17.
    Powell CJ (2012) Recommended Auger parameters for 42 elemental solids. J Electron Spectrosc Relat Phenom 185(1):1–3CrossRefGoogle Scholar
  18. 18.
    Fei Tan K, Xu J, Chang J et al (2010) Carbon deposition on Co catalysts during Fischer–Tropsch synthesis: a computational and experimental study. J Catal 274(2):121–129CrossRefGoogle Scholar
  19. 19.
    Weatherup RS, Amara H, Blume R et al (2014) Interdependency of subsurface carbon distribution and graphene–catalyst interaction. J Am Chem Soc 136(39):13698–13708CrossRefGoogle Scholar
  20. 20.
    Heine C, Lechner BA, Bluhm H et al (2016) Recycling of CO2: probing the chemical state of the Ni(111) surface during the methanation reaction with ambient-pressure X-ray photoelectron spectroscopy. J Am Chem Soc 138(40):13246–13252CrossRefGoogle Scholar
  21. 21.
    Deng X, Verdaguer A, Herranz T et al (2008) Surface chemistry of Cu in the presence of CO2 and H2O. Langmuir 24(17):9474–9478CrossRefGoogle Scholar
  22. 22.
    Víctor A, González S, Illas F et al (2008) Evidence for spontaneous CO2 activation on cobalt surfaces. Chem Phys Lett 454(4):262–268Google Scholar
  23. 23.
    Ko J, Kim B-K, Han JW (2016) Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces. J Phys Chem C 120(6):3438–3447CrossRefGoogle Scholar
  24. 24.
    Monachino E, Greiner M, Knop-Gericke A et al (2014) Reactivity of carbon dioxide on nickel: role of CO in the competing interplay between oxygen and graphene. J Phys Chem Lett 5(11):1929–1934CrossRefGoogle Scholar
  25. 25.
    Wu CH, Eren B, Bluhm H et al (2017) Ambient-pressure X-ray photoelectron spectroscopy study of cobalt foil model catalyst under CO, H2, and their mixtures. ACS Catal 7(2):1150–1157CrossRefGoogle Scholar
  26. 26.
    Wesner DA, Linden G, Bonzel HP (1986) Alkali promotion on cobalt: surface analysis of the effects of potassium on carbon monoxide adsorption and Fischer-Tropsch reaction. Appl Surf Sci 26(3):335–356CrossRefGoogle Scholar
  27. 27.
    Lahtinen J, Vaari J, Kauraala K (1998) Adsorption and structure dependent desorption of CO on Co(0001). Surf Sci 418(3):502–510CrossRefGoogle Scholar
  28. 28.
    Yaron D, Peterson K, Zolandz D et al (1990) Water hydrogen bonding: the structure of the water–carbon monoxide complex. J Chem Phys 92(12):7095–7109CrossRefGoogle Scholar
  29. 29.
    Favaro M, Xiao H, Cheng T et al (2017) Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc Natl Acad Sci USA 114:6706–6711Google Scholar
  30. 30.
    Lin W, Stocker KM, Schatz GC (2017) Mechanisms of hydrogen-assisted CO2 reduction on nickel. J Am Chem Soc 139(13):4663–4666CrossRefGoogle Scholar
  31. 31.
    Peng G, Sibener S, Schatz GC et al (2012) CO2 hydrogenation to formic acid on Ni(111). J Phys Chem C 116(4):3001–3006CrossRefGoogle Scholar
  32. 32.
    Cheng T, Xiao H, Goddard WA III (2016) Reaction mechanisms for the electrochemical reduction of CO2 to CO and formate on the Cu(100) surface at 298 K from quantum mechanics free energy calculations with explicit water. J Am Chem Soc 138(42):13802–13805CrossRefGoogle Scholar
  33. 33.
    Grabow LC, Mavrikakis M (2011) Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal 1(4):365–384CrossRefGoogle Scholar
  34. 34.
    Bartholomew CH, Farrauto RJ (2011) Fundamentals of industrial catalytic processes. Wiley, New YorkGoogle Scholar
  35. 35.
    Han Y, Axnanda S, Crumlin EJ et al (2017) Observing the electrochemical oxidation of Co metal at the solid/liquid interface using ambient pressure X-ray photoelectron spectroscopy. J Phys Chem B 122(2):666–671CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina
  2. 2.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  3. 3.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations