Advertisement

Catalysis Letters

, Volume 148, Issue 6, pp 1723–1730 | Cite as

Hunting for the “Sweet Spot”: Effects of Contiguous Guanines and Strand Lengths on the Catalytic Performance of DNA-Based Peroxidase Mimetics

  • Chuan He
  • Shanshan Zheng
  • Jinli Zhang
  • Wei Li
  • Yan Fu
Article
  • 131 Downloads

Abstract

Guanine-rich DNA strands have the potential to activate Cu2+ ions in peroxidase-like reactions based on the coordination of Cu2+ with nucleobases. Comparative studies on the number of guanines elucidate a sequence dependency that contiguous guanines are crucial to intrinsic peroxidase mimicking activities of DNA-Cu(II). The optimal number of repeat units to boost the enzyme-like activity of Cu2+ is identified via analyzing individual sequence of (T3G2)n and (T2G3)n. The catalytic performance of DNA-Cu(II) was found to be remarkably pH-tolerant through the H2O2-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine at acidic pH, dopamine at neutral pH as well as methylene blue at alkaline pH, respectively. It is the first time to report that intrinsic peroxidase-like activities of DNA-Cu(II) are greatly associated with binding affinity and stoichiometry between Cu2+ and DNA. (T3G2)4-Cu(II) with a dominant 1:1 stoichiometry shows the K m toward H2O2 of 93 mM at pH 4.0 and 8.65 mM at pH 11.0. This study paves a way to rationally design artificial metalloenzymes, and the ability to tune the enzymatic activity would be harnessed for biocatalysis, biosensing, green synthesis and nanoscience.

Graphical Abstract

Remarkable pH-tolerant peroxidase mimetics was constructed by direct coordination of Cu2+ within a guanine-rich DNA scaffold, of which the enzymatic activity is greatly associated with binding affinity and stoichiometry between Cu2+ and DNA. Intriguingly, there exist optimal guanine numbers and strand lengths to boost the catalytic performance of Cu2+.

Keywords

Nucleic acid Copper ion Peroxidase Metalloenzyme Oxidation 

Notes

Acknowledgements

This work was supported by the NSFC (21576206, 21621004), the Natural Science Foundation of Tianjin (15JCQNJC05800), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R46).

Supplementary material

10562_2018_2356_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1587 KB)

References

  1. 1.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Nat Nanotechnol 2:577CrossRefGoogle Scholar
  2. 2.
    Tao Y, Ju E, Ren J, Qu X (2015) Adv Mater 27:1097CrossRefGoogle Scholar
  3. 3.
    Sun H, Zhao A, Gao N, Li K, Ren J, Qu X (2015) Angew Chem Int Ed 54:7176CrossRefGoogle Scholar
  4. 4.
    Cheng H, Zhang L, He J, Guo W, Zhou Z, Zhang X, Nie S, Wei H (2016) Anal Chem 88:5489CrossRefGoogle Scholar
  5. 5.
    Cheng H, Liu Y, Hu Y, Ding Y, Lin S, Cao W, Wang Q, Wu J, Muhammad F, Zhao X, Zhao D, Li Z, Xing H, Wei H (2017) Anal Chem 89:11552CrossRefGoogle Scholar
  6. 6.
    Wei H, Wang E (2013) Chem Soc Rev 42:6060CrossRefGoogle Scholar
  7. 7.
    Wang X, Hu Y, Wei H (2016) Inorg Chem Front 3:41CrossRefGoogle Scholar
  8. 8.
    Hu Y, Cheng H, Zhao X, Wu J, Muhammad F, Lin S, He J, Zhou L, Zhang C, Deng Y, Wang P, Zhou Z, Nie S, Wei H (2017) ACS Nano 11:5558CrossRefGoogle Scholar
  9. 9.
    Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M, Anderson GJ, Wei J, Zhao Y, Nie G (2011) Biomaterials 32:1611CrossRefGoogle Scholar
  10. 10.
    Yang X, Fang C, Mei H, Chang T, Cao Z, Shangguan D (2011) Chem Eur J 17:14475CrossRefGoogle Scholar
  11. 11.
    Golub E, Freeman R, Willner I (2011) Angew Chem Int Ed 50:11710CrossRefGoogle Scholar
  12. 12.
    Golub E, Albada HB, Liao WC, Biniuri Y, Willner I (2016) J Am Chem Soc 138:164CrossRefGoogle Scholar
  13. 13.
    Kong DM, Wu J, Wang N, Yang W, Shen HX (2009) Talanta 80:459CrossRefGoogle Scholar
  14. 14.
    Poon LC, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) J Am Chem Soc 133:1877CrossRefGoogle Scholar
  15. 15.
    Stefan L, Denat F, Monchaud D (2012) Nucleic Acids Res 40:8759CrossRefGoogle Scholar
  16. 16.
    Wang S, Fu B, Peng S, Zhang X, Tian T, Zhou X (2013) Chem Commun (Camb) 49:7920CrossRefGoogle Scholar
  17. 17.
    Zorzini V, Buts L, Schrank E, Sterckx YG, Respondek M, Engelberg-Kulka H, Loris R, Zangger K, van Nuland NA (2015) Nucleic Acids Res 43:1241CrossRefGoogle Scholar
  18. 18.
    Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S (2016) Nucleic Acids Res 44:7373CrossRefGoogle Scholar
  19. 19.
    Chen J, Guo Y, Zhou J, Ju H (2017) Chem Eur J 23:4210CrossRefGoogle Scholar
  20. 20.
    Rohner M, Medina-Molner A, Spingler B (2016) Inorg Chem 55:6130CrossRefGoogle Scholar
  21. 21.
    Wang C, Jia G, Zhou J, Li Y, Liu Y, Lu S, Li C (2012) Angew Chem Int Ed 51:9352CrossRefGoogle Scholar
  22. 22.
    Guo S, Li H, Liu J, Yang Y, Kong W, Qiao S, Huang H, Liu Y, Kang Z (2015) ACS Appl Mater Interfaces 7:20937CrossRefGoogle Scholar
  23. 23.
    Garcia-Fernandez A, Megens RP, Villarino L, Roelfes G (2016) J Am Chem Soc 138:16308CrossRefGoogle Scholar
  24. 24.
    Marek JJ, Singh RP, Heuer A, Hennecke U (2017) Chem Eur J 23:6004CrossRefGoogle Scholar
  25. 25.
    Li Y, Jia G, Wang C, Cheng M, Li C (2015) Chembiochem 16:618CrossRefGoogle Scholar
  26. 26.
    Li W, Zhao X, Zhang J, Fu Y (2014) Biosens Bioelectron 60:252CrossRefGoogle Scholar
  27. 27.
    Yang J, Zheng L, Wang Y, Li W, Zhang J, Gu J, Fu Y (2016) Biosens Bioelectron 77:549CrossRefGoogle Scholar
  28. 28.
    Berti L, Burley GA (2008) Nat Nanotechnol 3:81CrossRefGoogle Scholar
  29. 29.
    Zhang S, Wang D, Fan PP, Sun LP (2015) Desalin Water Treat 57:10616CrossRefGoogle Scholar
  30. 30.
    Wang Y, He C, Li W, Zhang J, Fu Y (2017) Catal Lett 147:2144–2152CrossRefGoogle Scholar
  31. 31.
    Tao Y, Lin Y, Huang Z, Ren J, Qu X (2013) Adv Mater 25:2594CrossRefGoogle Scholar
  32. 32.
    Sun Y, Wang J, Li W, Zhang J, Zhang Y, Fu Y (2015) Biosens Bioelectron 74:1038CrossRefGoogle Scholar
  33. 33.
    Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) Biosens Bioelectron 66:251CrossRefGoogle Scholar
  34. 34.
    Mu J, Wang Y, Zhao M, Zhang L (2012) Chem Commun (Camb) 48:2540–2542CrossRefGoogle Scholar
  35. 35.
    Ishibashi K, Fujishima A, Watanabe T, Hashimto K (2000) J Photochem Photobio A 134:139CrossRefGoogle Scholar
  36. 36.
    Guo Y, Chen J, Cheng M, Monchaud D, Zhou J, Ju H (2017) Angew Chem Int Ed 56:16636CrossRefGoogle Scholar
  37. 37.
    Fleming AM, Burrows CJ (2013) Chem Res Toxicol 26:593CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Green Chemical Technology MOETianjin UniversityTianjinPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)TianjinPeople’s Republic of China
  3. 3.Key Laboratory of Systems Bioengineering MOETianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations