Skip to main content
Log in

Three-Dimensional Graphene–Magnetic Palladium Nanohybrid: A Highly Efficient and Reusable Catalyst for Promoting Organic Reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, graphene aerogel (GA) decorated with Fe3O4@SiO2@Pd nanoparticles (GA-FSNP@Pd) as a novel three-dimensional graphene–magnetic palladium nanohybrid catalyst. This catalyst showed high catalytic activity for the Suzuki and Heck cross-coupling reactions. This noteworthy catalyst activity can be due to the high dispersion of FSNP@Pd nanoparticles on GA. The nanohybrid exhibits an interconnected mesoporous framework of graphene sheets with uniform dispersion of FSNP@Pd nanoparticles. Interestingly, the catalyst could be recovered in a facile manner from the reaction mixture and recycled ten times without appreciable loss of activity. High yield, low reaction time, magnetic separation and non-toxicity of the nanohybrid catalyst are the main merits of this protocol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang S, Zhu C, Dong S (2013) Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity. J Mater Chem A 1(11):3593–3599

    Article  CAS  Google Scholar 

  2. Higgins D, Zamani P, Yu A, Chen Z (2016) The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress. Energy Environ Sci 9(2):357–390

    Article  CAS  Google Scholar 

  3. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  PubMed  Google Scholar 

  4. Mao S, Wen Z, Kim H, Lu G, Hurley P, Chen J (2012) A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 6(8):7505–7513

    Article  CAS  PubMed  Google Scholar 

  5. Qiu L, Liu D, Wang Y, Cheng C, Zhou K, Ding J et al (2014) Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels. Adv Mater 26(20):3333–3337

    Article  CAS  PubMed  Google Scholar 

  6. Yu M, Huang Y, Li C, Zeng Y, Wang W, Li Y et al (2015) Building three-dimensional graphene frameworks for energy storage and catalysis. Adv Funct Mater 25(2):324–330

    Article  CAS  Google Scholar 

  7. Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3(8):3132–3137

    Article  CAS  PubMed  Google Scholar 

  8. Wan W, Zhang F, Yu S, Zhang R, Zhou Y (2016) Hydrothermal formation of graphene aerogel for oil sorption: the role of reducing agent, reaction time and temperature. New J Chem 40(4):3040–3046

    Article  CAS  Google Scholar 

  9. Chen M, Zhang C, Li X, Zhang L, Ma Y, Zhang L et al (2013) A one-step method for reduction and self-assembling of graphene oxide into reduced graphene oxide aerogels. J Mater Chem A 1(8):2869–2877

    Article  CAS  Google Scholar 

  10. Li X, Wang X, Song S, Liu D, Zhang H (2012) Selectively deposited noble metal nanoparticles on Fe3O4/graphene composites: stable, recyclable, and magnetically separable catalysts. Chem Eur J 18(24):7601–7607

    Article  CAS  PubMed  Google Scholar 

  11. Zhu M, Diao G (2011) Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@ C nanocomposites: preparation, characterization, and their catalytic activity toward Suzuki and Heck coupling reactions. J Phys Chem C 115(50):24743–24749

    Article  CAS  Google Scholar 

  12. Zhang Z, Sun T, Chen C, Xiao F, Gong Z, Wang S (2014) Bifunctional nanocatalyst based on three-dimensional carbon nanotube–graphene hydrogel supported Pd nanoparticles: one-pot synthesis and its catalytic properties. ACS Appl Mater Interfaces 6(23):21035–21040

    Article  CAS  PubMed  Google Scholar 

  13. Pascanu V, Bermejo Gómez A, Ayats C, Platero-Prats AE, Carson F, Su J et al (2014) Double-supported silica-metal–organic framework palladium nanocatalyst for the aerobic oxidation of alcohols under batch and continuous flow regimes. ACS Catal 5(2):472–479

    Article  CAS  Google Scholar 

  14. Zhang D, Guan Y, Hensen EJ, Xue T, Wang Y (2014) Tuning the hydrogenation activity of Pd NPs on Al–MIL-53 by linker modification. Catal Sci Technol 4(3):795–802

    Article  CAS  Google Scholar 

  15. Wu Z-S, Yang S, Sun Y, Parvez K, Feng X, Müllen (2012) K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  CAS  PubMed  Google Scholar 

  16. Gao H, Sun Y, Zhou J, Xu R, Duan H (2013) Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl Mater Interfaces 5(2):425–432

    Article  CAS  PubMed  Google Scholar 

  17. Jeong H-K, Jin MH, An KH, Lee YH (2009) Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J Phys Chem C 113(30):13060–13064

    Article  CAS  Google Scholar 

  18. Cong H-P, Ren X-C, Wang P, Yu S-H (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6(3):2693–2703

    Article  CAS  PubMed  Google Scholar 

  19. Han W, Ren L, Gong L, Qi X, Liu Y, Yang L et al (2014) Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities. ACS Sustain Chem Eng 2(4):741–748

    Article  CAS  Google Scholar 

  20. Liu M, Peng C, Yang W, Guo J, Zheng Y, Chen P et al (2015) Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation. Electrochim Acta 178:838–846

    Article  CAS  Google Scholar 

  21. Cano R, Ramon DJ, Yus M (2011) Impregnated ruthenium on magnetite as a recyclable catalyst for the N-alkylation of amines, sulfonamides, sulfinamides, and nitroarenes using alcohols as electrophiles by a hydrogen autotransfer process. J Org Chem 76(14):5547–5557

    Article  CAS  PubMed  Google Scholar 

  22. Hu M-L, Safarifard V, Doustkhah E, Rostamnia S, Morsali A, Nouruzi N et al (2018) Taking organic reactions over metal-organic frameworks as heterogeneous catalysis. Microporous Mesoporous Mater 256:111–127

    Article  CAS  Google Scholar 

  23. Cai M, Peng J, Hao W, Ding G (2011) A phosphine-free carbonylative cross-coupling reaction of aryl iodides with arylboronic acids catalyzed by immobilization of palladium in MCM-41. Green Chem 13(1):190–196

    Article  CAS  Google Scholar 

  24. Miao T, Wang L, Li P, Yan J (2008) A highly efficient and recyclable ionic liquid anchored pyrrolidine catalyst for enantioselective Michael additions. Synthesis 2008(23):3828–3834

    Article  CAS  Google Scholar 

  25. Ikegami S, Hamamoto H (2009) Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev 109(2):583–593

    Article  CAS  PubMed  Google Scholar 

  26. Sun R, Liu B, Li BG, Jie S (2016) Palladium(II)@ zirconium-based mixed-linker metal–organic frameworks as highly efficient and recyclable catalysts for Suzuki and Heck cross-coupling reactions. ChemCatChem 8(20):3261–3271

    Article  CAS  Google Scholar 

  27. Huang Y, Zheng Z, Liu T, Lü J, Lin Z, Li H et al (2011) Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki–Miyaura cross-coupling reaction. Catal Commun 14(1):27–31

    Article  CAS  Google Scholar 

  28. Fan T, Pan D, Zhang H (2011) Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes. Ind Eng Chem Res 50(15):9009–9018

    Article  CAS  Google Scholar 

  29. Shabaan S, Letafat B, Esmati N, Shafiee A, Foroumadi A (2012) Synthesis and characterization of 1, 10-phenanthroline-2, 9-dicarbaldehyde-bis-(thiosemicarbazone). Asian J Chem 24(6):2819–2820

    CAS  Google Scholar 

  30. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  31. Xiong Z, Ji Y, Fang C, Zhang Q, Zhang L, Ye M et al (2014) Facile preparation of core–shell magnetic metal–organic framework nanospheres for the selective enrichment of endogenous peptides. Chem Eur J 20(24):7389–7395

    Article  CAS  PubMed  Google Scholar 

  32. Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2007) Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. J Mater Chem 17(31):3354–3362

    Article  CAS  Google Scholar 

  33. Li P, Wang L, Zhang L, Wang GW (2012) Magnetic nanoparticles-supported palladium: a highly efficient and reusable catalyst for the Suzuki, Sonogashira, and Heck reactions. Adv Synth Catal 354(7):1307–1318

    Article  CAS  Google Scholar 

  34. Xuan S, Jiang W, Gong X (2011) Immobilization of Pd nanocatalysts on magnetic rattles and their catalytic property. Dalton Trans 40(31):7827–7830

    Article  CAS  PubMed  Google Scholar 

  35. Yan W, He F, Gai S, Gao P, Chen Y, Yang P (2014) A novel 3D structured reduced graphene oxide/TiO2 composite: synthesis and photocatalytic performance. J Mater Chem 2(10):3605–3612

    Article  CAS  Google Scholar 

  36. Ta TKH, Trinh M-T, Long NV, Nguyen TTM, Nguyen TLT, Thuoc TL et al (2016) Synthesis and surface functionalization of Fe3O4-SiO2 core-shell nanoparticles with 3-glycidoxypropyltrimethoxysilane and 1,1′-carbonyldiimidazole for bio-applications. Colloids Surf A 504:376–383

    Article  CAS  Google Scholar 

  37. Yinghuai Z, Peng SC, Emi A, Zhenshun S, Kemp RA (2007) Supported ultra small palladium on magnetic nanoparticles used as catalysts for Suzuki cross-coupling and heck reactions. Adv Synth Catal 349(11-12):1917–1922

    Article  CAS  Google Scholar 

  38. Shylesh S, Wang L, Thiel WR (2010) Palladium(II)-phosphine complexes supported on magnetic nanoparticles: filtration-free, recyclable catalysts for Suzuki–Miyaura cross-coupling reactions. Adv Synth Catal 352(2–3):425–432

    Article  CAS  Google Scholar 

  39. Shylesh S, Wang L, Demeshko S, Thiel WR (2010) Facile synthesis of mesoporous magnetic nanocomposites and their catalytic application in carbon–carbon coupling reactions. ChemCatChem 2(12):1543–1547

    Article  CAS  Google Scholar 

  40. Liao Y, He L, Huang J, Zhang J, Zhuang L, Shen H et al (2010) Magnetite nanoparticle-supported coordination polymer nanofibers: synthesis and catalytic application in Suzuki-Miyaura coupling. ACS Appl Mater 2(8):2333–2338

    Article  CAS  Google Scholar 

  41. Borhade SR, Waghmode SB (2011) Studies on Pd/NiFe2O4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls. Beilstein J Org Chem 7:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jang Y, Chung J, Kim S, Jun SW, Kim BH, Lee DW et al (2011) Simple synthesis of Pd–Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys Chem Chem Phys 13(7):2512–2516

    Article  CAS  PubMed  Google Scholar 

  43. Zeltner M, Schätz A, Hefti ML, Stark WJ (2011) Magnetothermally responsive C/Co@ PNIPAM-nanoparticles enable preparation of self-separating phase-switching palladium catalysts. J Mater Chem 21(9):2991–2996

    Article  CAS  Google Scholar 

  44. Schätz A, Long TR, Grass RN, Stark WJ, Hanson PR, Reiser O (2010) Immobilization on a nanomagnetic Co/C surface using ROM polymerization: generation of a hybrid material as support for a recyclable palladium catalyst. Adv Funct Mater 20(24):4323–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Amali AJ, Rana RK (2009) Stabilisation of Pd (0) on surface functionalised Fe3O4 nanoparticles: magnetically recoverable and stable recyclable catalyst for hydrogenation and Suzuki–Miyaura reactions. Green Chem 11(11):1781–1786

    Article  CAS  Google Scholar 

  46. Yang J, Wang D, Liu W, Zhang X, Bian F, Yu W (2013) Palladium supported on a magnetic microgel: an efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem 15(12):3429–3437

    Article  CAS  Google Scholar 

  47. Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10(1):59–66

    Article  CAS  Google Scholar 

  48. Ioni YV, Lyubimov SE, Davankov VA, Gubin SP (2013) The use of palladium nanoparticles supported on graphene oxide in the Mizoroki-Heck reaction. Russ J Inorg Chem 58(4):392–394

    Article  CAS  Google Scholar 

  49. Nabid MR, Bide Y, Tabatabaei Rezaei SJ (2011) Pd nanoparticles immobilized on PAMAM-grafted MWCNTs hybrid materials as new recyclable catalyst for Mizoraki–Heck cross-coupling reactions. Appl Catal A 406(1):124–132

    Article  CAS  Google Scholar 

  50. Zhu M, Wang Y, Wang C, Li W, Diao G (2013) Hematite nanoparticle-templated hollow carbon nanonets supported palladium nanoparticles: preparation and application as efficient recyclable catalysts. Catal Sci Technol 3(4):952–961

    Article  CAS  Google Scholar 

  51. Ko S, Jang J (2006) A highly efficient palladium nanocatalyst anchored on a magnetically functionalized polymer-nanotube support. Angew Chem Int Ed 45(45):7564–7567

    Article  CAS  Google Scholar 

  52. Yoon H, Ko S, Jang J (2007) Nitrogen-doped magnetic carbon nanoparticles as catalyst supports for efficient recovery and recycling. ChemComm (14):1468–1470

  53. Coker VS, Bennett JA, Telling ND, Henkel T, Charnock JM, van der Laan G et al (2010) Microbial engineering of nanoheterostructures: biological synthesis of a magnetically recoverable palladium nanocatalyst. ACS Nano 4(5):2577–2584

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of this work by Tarbiat Modares University and Kosar University of Bojnord is gratefully acknowledged. Mahboobeh Tanhaei; PhD student who did all the experience. Alireza Mahjoub; Supervisor of the project. Razieh Nejat; Advisor of the project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Mahjoub or Razieh Nejat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanhaei, M., Mahjoub, A. & Nejat, R. Three-Dimensional Graphene–Magnetic Palladium Nanohybrid: A Highly Efficient and Reusable Catalyst for Promoting Organic Reactions. Catal Lett 148, 1549–1561 (2018). https://doi.org/10.1007/s10562-018-2347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2347-y

Keywords

Navigation