Catalysis Letters

, Volume 148, Issue 4, pp 1130–1141 | Cite as

Photocatalytic Degradation of Azo Dyes and Organic Contaminants in Wastewater Using Magnetically Recyclable Fe3O4@UA-Cu Nano-catalyst

  • M. A. Abdullahi
  • Md Amir
  • S. M. Asiri
  • A. D. Korkmaz
  • A. Baykal
  • G. S. P. Soylu
  • S. Karakuş
  • A. Kilislioğlu


In this study, we delineated the structural properties and catalytic behavior of nanocrystalline Fe3O4@Urocanic acid(UA)–Cu magnetically recyclable nanocatalyst (MRCs) which was produced via hydrothermal route. Here, Urocanic acid (UA) used as a linker to attach Cu nanoparticles and stabilized the iron oxide. Structural properties were examined through Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDX). Moreover, thermal and magnetic properties of MRCs were completed using thermal gravimetry (TG) and vibrating sample magnetometry (VSM) respectively. Moreover, the catalytic studies of product were recorded by UV–Vis absorption spectrophotometer for azo dyes and aromatic nitro compounds. The synthesized MRCs was found as an efficient nanocatalyst and magnetically recyclable from the reaction medium without significantly loss in its catalytic activity. Fe3O4@UA-Cu MRCs can be considered for the treatment of industrial dyes pollutants and organic contaminants from wastewater.

Graphical Abstract

Proposed mechanism of photocatalysis degradation of dye by Fe3O4@UA-Cu MRCs.


Photocatalytic degradation Nanocrystalline magnetic recyclable catalyst Hydrogenation Aromatic compound Azo dyes 



This work is supported by Scientific Research Projects Coordination Unit of Istanbul University. Authors sincerely acknowledge with deep gratitude to Assist. Prof. Aylin Yıldız for providing us the important SEM facility.


  1. 1.
    Booth G (2005) Nitro compounds, aromatic. In: Chadwick SS (ed), Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Wu X, Wu W, Huang Q et al (2015) Appl Sur Sci 331:210CrossRefGoogle Scholar
  3. 3.
    Kurtan U Amir Md, Baykal A (2015). Chin J Catal 36:705CrossRefGoogle Scholar
  4. 4.
    Arora P, Sasikala C, Ramana C (2012) Appl Microbiol Biotechnol 93:2265CrossRefGoogle Scholar
  5. 5.
    Luan F, Xie L, Li J et al (2013) Chemosphere 91:1035Google Scholar
  6. 6.
    Chang Y, Chen D (2009) J Hazard Mater 165:664CrossRefGoogle Scholar
  7. 7.
    Padmapriya G, Manikandan A, Krishnasamy V et al (2016) J Mol Struc 1119:39CrossRefGoogle Scholar
  8. 8.
    Josephine B, Manikandan A, Teresita V et al (2016). Korean J Chem Eng 33:1590CrossRefGoogle Scholar
  9. 9.
    Feng J, Su L, Ma Y et al (2013) Chem Eng J 221:16CrossRefGoogle Scholar
  10. 10.
    Tripathy N, Ahmad R, Song J et al (2014) Mater Lett 136:171CrossRefGoogle Scholar
  11. 11.
    Salem I (2000) Transition Met Chem 25:599CrossRefGoogle Scholar
  12. 12.
    Fu J, Kyzas G (2014) Chin J Catal 35:1CrossRefGoogle Scholar
  13. 13.
    Maruthamani D, Vadivel S, Kumaravel M et al (2017) J Coll Inter Sci 498:449CrossRefGoogle Scholar
  14. 14.
    Padmapriya G, Manikandan A, Krishnasamy V et al (2016) J Superconductivity and novel. Magnetism 29:2141Google Scholar
  15. 15.
    Shameem A, Devendran P, Siva V et al (2017) J Inorg Organomet Polym Mater 27:692CrossRefGoogle Scholar
  16. 16.
    Asadullah M, Asaduzzaman M, Kabir M et al (2010) J Hazard Mater 174:437CrossRefGoogle Scholar
  17. 17.
    Chen W, Lu W, Yao Y et al (2007) Environ Sci Technol 41:6240CrossRefGoogle Scholar
  18. 18.
    Tasaki T, Wada T, Fujimoto K et al (2009) J Hazard Mater 162:1103CrossRefGoogle Scholar
  19. 19.
    Vidhu V, Philip D (2014) Micron 56:54CrossRefGoogle Scholar
  20. 20.
    Lin C, Gung C, Sun J et al (2014) J Membr Sci 471:285CrossRefGoogle Scholar
  21. 21.
    Mishra A, Arockiadoss T, Ramaprabhu S (2010) Chem Eng J 162:1026CrossRefGoogle Scholar
  22. 22.
    Lazaridis N, Kyzas G, Vassiliou A. et al (2007) Langmuir 23:7634CrossRefGoogle Scholar
  23. 23.
    Xu Y, Zhou M, Geng H et al (2012) Appl Surf Sci 258:3897CrossRefGoogle Scholar
  24. 24.
    Amir Md, Kurtan U, Baykal A (2015) J Ind Eng Chem 27:347CrossRefGoogle Scholar
  25. 25.
    Manikandan A, Kennedy L, Mary J et al (2014) J Ind Eng Chem 20:2077CrossRefGoogle Scholar
  26. 26.
    Amir Md, Ünal B, Shirsath S et al (2015) Superlattice Microst 85:747CrossRefGoogle Scholar
  27. 27.
    Kurtan U, Amir Md, Baykal A et al (2016) Appl Surf Sci 363:66CrossRefGoogle Scholar
  28. 28.
    Amir Md, Kurtan U, Baykal A (2015) Chin J Catal 36:1280CrossRefGoogle Scholar
  29. 29.
    Kurtan U, Onus E, Amir Md et al (2015) J Inorg Organomet Polym 25:1120CrossRefGoogle Scholar
  30. 30.
    Nascimento A, Caires F, Gomes D et al (2014) Thermochim Acta 575:212CrossRefGoogle Scholar
  31. 31.
    Kurtan U, Baykal A et al (2014) Mater Res Bull 60:79CrossRefGoogle Scholar
  32. 32.
    Junejo Y, Baykal A (2014) Turk J Chem 38:765CrossRefGoogle Scholar
  33. 33.
    Zhang X, Jiang W, Gong X et al (2010) J Alloys Compd 508:400CrossRefGoogle Scholar
  34. 34.
    Naik B, Prasad V, Ghosh N (2012) Powder Technol 232:1CrossRefGoogle Scholar
  35. 35.
    Sun L, He J, An S et al (2013) J Catal 34:1378Google Scholar
  36. 36.
    El-Deen A, Askalany A, Halaoui R et al. J Mol Struc 1036:161Google Scholar
  37. 37.
    Mostafa S (2007) Transition Met Chem 32:769CrossRefGoogle Scholar
  38. 38.
    Inomata Y, Arai Y, Yamakoshi T et al (2004) Inorg Biochem 98:2149CrossRefGoogle Scholar
  39. 39.
    Kurtan U, Onuş E, Amir Md et al (2015) J Inorg Organomet Polym 25:1120CrossRefGoogle Scholar
  40. 40.
    Kurtan U, Amir Md, Baykal A, Sözeri H, Toprak M et al (2016) J Nanosci Nanotechnol 16:2548CrossRefGoogle Scholar
  41. 41.
    Kurtan U, Baykal A, Amir Md. et al (2016) Appl Surf Sci 76:16CrossRefGoogle Scholar
  42. 42.
    Sinha A, Basu M, Sarkar S et al (2013) J Colloid Interface Sci 398:13CrossRefGoogle Scholar
  43. 43.
    Mathubala G, Manikandan A, Antony S et al (2016) J Mol Struc 1113:79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of EngineeringIstanbul UniversityIstanbulTurkey
  2. 2.Department of Chemistry, Faculty of EngineeringIstanbul UniversityIstanbulTurkey
  3. 3.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiHauz KhasIndia
  4. 4.Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  5. 5.Department of ChemistryIstanbul Medeniyet UniversityIstanbulTurkey

Personalised recommendations