Skip to main content
Log in

Carbon Permeation: The Prerequisite Elementary Step in Iron-Catalyzed Fischer–Tropsch Synthesis

  • Perspective
  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Carbon permeation into iron, a very important initial stage in iron-catalyzed heterogeneous reactions such as Fischer–Tropsch synthesis (FTS), is explored theoretically, to extend our thermodynamic and kinetic understanding of the process. The interaction of C atoms with five model surfaces (Fe (100), (110), (111), (211), (310)) was studied in six distinct ways. In the first, the random deposition of C atoms on the Fe surfaces was simulated by molecular dynamics, with C atoms released gradually. It shows that the early stages of carburization is a C permeation process, without much disturbance to the Fe surfaces. In the second approach, C atoms were approached to the surfaces sequentially. They bind readily (by 7–9 eV per C) to the surfaces, but to a different extent—strongest on Fe (100), and weakest on Fe (111). Addition of further C atoms proceeds with a slightly decreasing magnitude of the chemisorption energy, because of the increasing positive charges on the Fe atoms. At a certain coverage, different on each surface, C atoms prefer in calculation to go subsurface. C2 units formed on some of the surfaces. In a third approach, detailed transition paths of C permeation subsurface were calculated, with associated barriers in the order Fe (100) > (111) > (310) > (211) > (110). Differences in stacking geometries of the Fe layers in these surfaces appear to be the main cause of the variation. Comparing C permeation with surface migration on clean surfaces, the barrier of the former is smaller than that of the latter for most of the surfaces, except Fe (111). At intermediate C coverage, the (100) surface also prefers migration to permeation. In a fourth approach, we calculate that with increasing carbon chemical potential, the surface energies of iron (110), (111), and (211) surfaces decrease, while those of (100) and (310) first decrease, then increase. Based on these surface energies, a Wulff construction of nanoparticle facets is made. In a fifth approach, the position in energy of the d-band centers of the Fe surfaces upon C permeation was studied. For all the surfaces, the d-band centers move away from the Fermi level with increasing C coverage, and start to resemble those of the bulk carbide phases at high C coverage. In the last approach, we show that C permeation not only lowers the barriers of model reactions for CH4 formation and C–C chain propagation, two competing processes in FTS, but also changes the selectivity of the two competing processes. At high C coverage, chain propagation becomes preferred. A general picture emerges of C permeation on Fe surfaces as a stepwise process with opposite thermodynamic and kinetic preferences.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Anderson RB (1984) The Fischer-Tropsch Synthesis. Academic Press, Orlando

    Google Scholar 

  2. Dry ME (1982) Hydrocarb Process 61:121

    CAS  Google Scholar 

  3. Gregor JH (1990) Catal Lett 7:317

    Article  CAS  Google Scholar 

  4. Fox JM (1993) Catal Rev—Sci Eng 35:169

    Article  CAS  Google Scholar 

  5. Geerlings JJC, Wilson JH, Kramer GJ, Kuipers HPCE, Hoek A, Huisman HM (1999) Appl Catal A 186:27

    Article  CAS  Google Scholar 

  6. Li S, Ding W, Meitzner GD, Iglesia E (2002) J Phys Chem B 106:85

    Article  CAS  Google Scholar 

  7. Gaube J, Klein HF (2008) J Mol Catal A 283:60

    Article  CAS  Google Scholar 

  8. Govender NS, de Croon MHJM, Schouten JC (2010) Appl Catal A 373:81

    Article  CAS  Google Scholar 

  9. Pijolat M, Perrichon V, Bussière P (1987) J Catal 107:82

    Article  CAS  Google Scholar 

  10. Dry ME, Shingles T, Boshoff LJ, Botha CVH (1970) J Catal 17:347

    Article  CAS  Google Scholar 

  11. Li S, O’Brien RJ, Meitzner GD, Hamdeh H, Davis BH, Iglesia E (2001) Appl Catal A 219:215

    Article  CAS  Google Scholar 

  12. de Smit E, Beale AM, Nikitenko S, Weckhuysen BM (2009) J Catal 262:244

    Article  CAS  Google Scholar 

  13. Hofer L, (1956) Catalysis vol 4. Emmett PH (ed). Reinholt, New York

    Google Scholar 

  14. Jin YM, Mansker L, Datye AK (1999) Am Chem Soc Div Pet Chem 44:97–99

    CAS  Google Scholar 

  15. Davis BH (2003) Catal Today 84:83

    Article  CAS  Google Scholar 

  16. Caceres PG (2006) Mater Charact 56:26

    Article  CAS  Google Scholar 

  17. de Smit E, Cinquini F, Beale AM, Safonova OV, van Beek W, Sautet P, Weckhuysen BM (2010) J Am Chem Soc 132:14928

    Article  CAS  PubMed  Google Scholar 

  18. Panaccione G, Fujii J, Vobornik I, Trimarchi G, Binggeli N, Goldoni A, Larciprete R, Rossi G (2006) Phys Rev B 73:035431

    Article  CAS  Google Scholar 

  19. Arabczyk W, Narkiewicz U (1997) Vacuum 48:347

    Article  CAS  Google Scholar 

  20. Arabczyk W, Moszyński D, Narkiewicz U (1999) Vacuum 54:3

    Article  CAS  Google Scholar 

  21. Arabczyk W, Rausche E, Storbeck F (1991) Surf Sci 247:264

    Article  CAS  Google Scholar 

  22. Liu X-w, Li Y-w, Wang J-g, Huo C-f (2012) J Fuel Chem Technol 40:202

    Article  CAS  Google Scholar 

  23. Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) Surf Sci 606:733

    Article  CAS  Google Scholar 

  24. Sorescu DC (2006) Phys Rev B 73:155420

    Article  CAS  Google Scholar 

  25. Jiang DE, Carter EA (2005) Phys Rev B 71:045402

    Article  CAS  Google Scholar 

  26. Jiang DE, Carter EA (2003) Phys Rev B 67:214103

    Article  CAS  Google Scholar 

  27. Begtrup GE, Gannett W, Meyer JC, Yuzvinsky TD, Ertekin E, Grossman JC, Zettl A (2009) Phys Rev B 79:205409

    Article  CAS  Google Scholar 

  28. Ji J, Duan X, Gong X, Qian G, Zhou X, Chen D, Yuan W (2013) Ind Eng Chem Res 52:17151

    Article  CAS  Google Scholar 

  29. Archard JF, Rowntree RA (1988) Proc R Soc Lond A 418:405

    Article  CAS  Google Scholar 

  30. Ding M, Yang Y, Wu B, Li Y, Wang T, Ma L (2014) Energy Procedia 61:2267

    Article  CAS  Google Scholar 

  31. Cheshkova KT, Bibin VN, Popov BI (1976) React Kinet Catal Lett 4:307

    Article  CAS  Google Scholar 

  32. Storch G, Golambik N, Anderson R (1954) Synthesis of hydrocarbons from carbon monoxide and hydrogen [Russian translation]. Inostr. Lit., Moscow

    Google Scholar 

  33. Karabelchtchikova O. Fundamentals of Mass Transfer in Gas Carburizing Degree of Doctor of Philosophy Worcester Polytechnic Institute 2007

  34. Liu X, Zhang C, Li Y, Niemantsverdriet JW, Wagner JB, Hansen TW (2017) ACS Catal 7:4867

    Article  CAS  Google Scholar 

  35. Zhou X, Mannie GJA, Yin J, Yu X, Weststrate CJ, Wen X, Wu K, Yang Y, Li Y, Niemantsverdriet JW (2018) ACS Catal 8:7326

    Article  CAS  Google Scholar 

  36. Huo CF, Wu BS, Gao P, Yang Y, Li YW, Jiao H (2011) Angew Chem Int Ed 50:7403

    Article  CAS  Google Scholar 

  37. Wang T, Wang S, Luo Q, Li Y-W, Wang J, Beller M, Jiao H (2014) J Phys Chem C 118:4181

    Article  CAS  Google Scholar 

  38. Plimpton S (1995) J Comput Phys 117:1

    Article  CAS  Google Scholar 

  39. Liyanage LSI, Kim S-G, Houze J, Kim S, Tschopp MA, Baskes MI, Horstemeyer MF (2014) Phys Rev B 89:094102

    Article  CAS  Google Scholar 

  40. Berendsen HJC, Postma JPM, Gunsteren WFv, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  41. Hasnaoui A, Politano O, Salazar JM, Aral G, Kalia RK, Nakano A, Vashishta P (2005) Surf Sci 579:47

    Article  CAS  Google Scholar 

  42. Jeon B, Van Overmeere Q, van Duin ACT, Ramanathan S (2013) PCCP 15:1821

    Article  CAS  PubMed  Google Scholar 

  43. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  44. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  45. Blöchl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  46. Kresse G, Joubert D (1999) Phys Rev B 59:1758

    Article  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  48. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  49. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  50. Jónsson H, Mills G, Jacobsen KW (1998) Classical and quantum dynamics in condensed phase simulations. World Scientific, Singapore

    Google Scholar 

  51. Zhao S, Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2012) J Catal 294:47

    Article  CAS  Google Scholar 

  52. Zhao S, Liu X-W, Huo C-F, Li Y-W, Wang J, Jiao H (2015) Catal Struct React 1:44

    Article  Google Scholar 

  53. Eyring H (1935) J Chem Phys 3:107

    Article  CAS  Google Scholar 

  54. Lu J, Behtash S, Faheem M, Heyden A (2013) J Catal 305:56

    Article  CAS  Google Scholar 

  55. Ackland GJ, Jones AP (2006) Phys Rev B 73:054104

    Article  CAS  Google Scholar 

  56. Panzner G, Diekmann W (1985) Surf Sci 160:253

    Article  CAS  Google Scholar 

  57. Wiltner A, Linsmeier C (2004) Phys Status Solidi (a) 201:881

    Article  CAS  Google Scholar 

  58. Riikonen S, Krasheninnikov AV, Nieminen RM (2010) Phys Rev B 82:125459

    Article  CAS  Google Scholar 

  59. Shaik S, Rzepa HS, Hoffmann R (2013) Angew Chem Int Ed 52:3020

    Article  CAS  Google Scholar 

  60. Li J, Croiset E, Ricardez-Sandoval L (2014) PCCP 16:2954

    Article  CAS  PubMed  Google Scholar 

  61. Barteau MA, Madix RJ (1982) Surf Sci 115:355

    Article  CAS  Google Scholar 

  62. Akita M, Hirakawa H, Tanaka M, Moro-oka Y (1995) J Organomet Chem 485:C14

    Article  CAS  Google Scholar 

  63. Jensen MP, Phillips DA, Sabat M, Shriver DF (1992) Organometallics 11:1859

    Article  CAS  Google Scholar 

  64. Wijeyesekera SD, Hoffmann R, Wilker CN (1984) Organometallics 3:962

    Article  CAS  Google Scholar 

  65. LaPointe AM (2003) Inorg Chim Acta 345:359

    Article  CAS  Google Scholar 

  66. Pauling L (1947) J Am Chem Soc 69:542

    Article  CAS  Google Scholar 

  67. Cairns JA, Coad JP, Richards EWT, Stenhouse IA (1980) Nature 288:686

    Article  CAS  Google Scholar 

  68. Nandula A, Trinh QT, Saeys M, Alexandrova AN (2015) Angew Chem Int Ed 54:5312

    Article  CAS  Google Scholar 

  69. Tang W, Sanville E, Henkelman G (2009) J Phys 21:084204

    CAS  Google Scholar 

  70. Le Caer G, Dubois JM, Pijolat M, Perrichon V, Bussiere P (1982) J Phys Chem 86:4799

    Article  Google Scholar 

  71. Schliehe C, Yuan J, Glatzel S, Siemensmeyer K, Kiefer K, Giordano C (2012) Chem Mater 24:2716

    Article  CAS  Google Scholar 

  72. Snovski R, Grinblat J, Sougrati M-T, Jumas J-C, Margel S (2014) J Magn Magn Mater 349:35

    Article  CAS  Google Scholar 

  73. Huo C-F, Wu B-S, Gao P, Yang Y, Li Y-W, Jiao H (2011) Angew Chem Int Ed 50:7403

    Article  CAS  Google Scholar 

  74. Wang T, Liu X, Wang S, Huo C, Li Y-W, Wang J, Jiao H (2011) J Phys Chem C 115:22360

    Article  CAS  Google Scholar 

  75. Winterbottom WL (1967) Acta Metall 15:303

    Article  CAS  Google Scholar 

  76. Wulff G (1901) Z Kristallogr 34:449

    CAS  Google Scholar 

  77. Biacchi AJ, Schaak RE (2011) ACS Nano 5:8089

    Article  CAS  PubMed  Google Scholar 

  78. Kleibert A, Meiwes-Broer KH, Bansmann J (2009) Phys Rev B 79:125423

    Article  CAS  Google Scholar 

  79. Kleibert A, Rosellen W, Getzlaff M, Bansmann J (2011) Beilstein J Nanotechnol 2:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hammer B, Norskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  81. Hammer B, Nørskov JK, (2000) Advances in catalysis, vol 45. In: Song C (ed). Academic Press, Cambridge

    Google Scholar 

  82. Chen B, Wang D, Duan X, Liu W, Li Y, Qian G, Yuan W, Holmen A, Zhou X, Chen D (2018) ACS Catal 8:2709

    Article  CAS  Google Scholar 

  83. Van Der Laan GP, Beenackers AACM (1999) Catal Rev 41:255

    Article  Google Scholar 

  84. Schulz H, vein Steen E, Claey M, (1994) Studies in surface science and catalysis, vol 81. In: Curry-Hyde HE, Howe RF (eds). Elsevier, Amsterdam,

    Google Scholar 

  85. Huo C-F, Li Y-W, Wang J, Jiao H (2009) J Am Chem Soc 131:14713

    Article  CAS  PubMed  Google Scholar 

  86. Pham TH, Qi Y, Yang J, Duan X, Qian G, Zhou X, Chen D, Yuan W (2015) ACS Catal 5:2203

    Article  CAS  Google Scholar 

  87. Cheng J, Hu P, Ellis P, French S, Kelly G, Lok CM (2010) J Phys Chem C 114:1085

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21473229, 91545121, 21603252, 91645115 and 21473003), No. 201601D021048 from the Shanxi Province Science Foundation for Youth, and Synfuels China, Co. Ltd. We also acknowledge National Thousand Young Talents Program of China, Hundred-Talent Program of Chinese Academy of Sciences and Shanxi Hundred-Talent Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roald Hoffmann or Xiao-Dong Wen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4849 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Liu, X., Cao, Z. et al. Carbon Permeation: The Prerequisite Elementary Step in Iron-Catalyzed Fischer–Tropsch Synthesis. Catal Lett 149, 645–664 (2019). https://doi.org/10.1007/s10562-018-02651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-02651-0

Keywords

Navigation