Catalysis Letters

, Volume 148, Issue 2, pp 660–670 | Cite as

Heteropoly Acid Supported on Cu-Doped Three-Dimensionally Ordered Macroporous SiO2 as Efficient Catalyst for the Selective Oxidation of Methacrolein

  • Xinxin Ma
  • Tingting Wang
  • Minna Zhang
  • Wancheng Zhu
  • Zhaoshun Zhang
  • Heng Zhang


Cu-doped three-dimensionally ordered macroporous (3DOM) SiO2 was prepared by a colloidal templating method and used as the support of heteropoly acid for the selective oxidation of methacrolein (MAL) to methacrylic acid (MAA). The doping effects of Cu on the structures, physico-chemical properties and catalytic performances of the catalysts were investigated. Results showed that Cu was well distributed in the SiO2 framework with the mole ratio of Cu/Si = 5%, and the specific surface area was much higher than that of the pure 3DOM SiO2. After supported with H4PMo11VO40 (HPVA), the specific surface areas of the as-synthesized catalysts significantly decreased, from 239 to 64 m2 g−1 for HPVA/3DOM (5%Cu)–SiO2 and from 141 to 32 m2 g−1 for HPVA/3DOM SiO2, respectively, because of the blockage of the micropores. The supported HPVA retained Keggin-type primary structure and its reducibility was obviously improved due to the existence of Cu in the supports, which thereby resulted in the great enhancement of the catalytic property. The conversion of MAL and the selectivity to MAA were respectively 36 and 47% on HPVA/3DOM SiO2. Comparatively, the conversion of MAL reached 63% with 82% MAA selectivity on HPVA/3DOM (5%Cu)–SiO2.

Graphical Abstract


Heteropoly acid Supported catalyst Three-dimensionally ordered macroporous support Selective oxidation Methacrolein Methacrylic acid 



This work is financially supported by the National Natural Science Foundation of China (21206179) and the State Key Laboratory of Chemical Engineering, China (SKL-ChE-15A03).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.


  1. 1.
    Sun M, Zhang JZ, Putaj P, Caps V, Lefebvre F, Pelletier J, Basset JM (2014) Chem Rev 114:981CrossRefGoogle Scholar
  2. 2.
    Wang SS, Yang GY (2015) Chem Rev 115:4893CrossRefGoogle Scholar
  3. 3.
    Liu L, Ye XP, Bozell JJ (2012) ChemSusChem 5:1162CrossRefGoogle Scholar
  4. 4.
    Jing F, Katryniok B, Dumeignil F, Bordes-Richard E, Paul S (2014) Catal Sci Technol 4:2938CrossRefGoogle Scholar
  5. 5.
    Cotta RF, Silva Rocha KADS, Kozhevnikova EF, Kozhevnikov IV, Gusevskaya EV (2017) Catal Today 289:14CrossRefGoogle Scholar
  6. 6.
    Zhou L, Wang L, Zhang S, Yan R, Diao Y (2017) Mol Catal 433:153CrossRefGoogle Scholar
  7. 7.
    Li XK, Zhang YG (2016) ACS Catal 6:2785CrossRefGoogle Scholar
  8. 8.
    Srinivas M, Raveendra G, Parameswaram G, Prasad PSS, Lingaiah N (2016) J Mol Catal A 413:7CrossRefGoogle Scholar
  9. 9.
    Trautwein G, Bakkali BE, Alcaniz-Monge J, Artetxe B, Reinoso S, Gutierrez-Zorrilla JM (2015) J Catal 331:110CrossRefGoogle Scholar
  10. 10.
    Bartoli MJ, Monceaux L, Bordes E, Hecquet G, Courtine P (1992) Stud Surf Sci Catal 72:81CrossRefGoogle Scholar
  11. 11.
    Courtine P, Bordes E (1997) Appl Catal A 157:45CrossRefGoogle Scholar
  12. 12.
    Mizuno N, Misono M (1998) Chem Rev 98:199CrossRefGoogle Scholar
  13. 13.
    Hanif MA, Nisar S, Rashid U (2017) Catal Rev 59:165CrossRefGoogle Scholar
  14. 14.
    Sheng X, Zhou Y, Zhang Y, Xue M, Duan YI (2012) Chem Eng J 179:295CrossRefGoogle Scholar
  15. 15.
    Ladera RM, Fierro JLG, Ojeda M, Rojas S (2014) J Catal 312:195CrossRefGoogle Scholar
  16. 16.
    Kumar CR, Rambabu N, Maheria KC, Dalai AK, Lingaiah N (2014) Appl Catal A 485:74CrossRefGoogle Scholar
  17. 17.
    Kanno M, Yasukawa T, Ninomiya W, Ooyachi K, Kamiya Y (2010) J Catal 273:1CrossRefGoogle Scholar
  18. 18.
    Kanno M, Miura Y, Yasukawa T, Hasegawa T, Ninomiya W, Ooyachi K, Imai H, Tatsumi T, Kamiya Y (2011) Catal Commun 13:9CrossRefGoogle Scholar
  19. 19.
    Kim H, Jung JC, Park DR, Baeck SH, Song IK (2007) Appl Catal A 320:159CrossRefGoogle Scholar
  20. 20.
    Mao H, Zhu K, Lu X, Zhang G, Yao C, Kong Y, Liu J (2015) J Colloid Interface Sci 446:141CrossRefGoogle Scholar
  21. 21.
    Khder AS, Hassan HMA, El-Shall MS (2014) Appl Catal A 487:110CrossRefGoogle Scholar
  22. 22.
    Weng ZH, Wang JY, Zhang SH, Yan C, Jian XG (2008) Appl Catal A 339:145CrossRefGoogle Scholar
  23. 23.
    Mukai SR, Shimoda M, Lin L, Tamon H, Masuda T (2003) Appl Catal A 256:107CrossRefGoogle Scholar
  24. 24.
    Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, Bekkum HV (1994) Catal Lett 30:241CrossRefGoogle Scholar
  25. 25.
    Rao PM, Wolfson A, Kababya S, Vega S, Landau MV (2005) J Catal 232:210CrossRefGoogle Scholar
  26. 26.
    Popa A, Sasca V, Verdes O, Ianasi C, Banica R (2017) J Therm Anal Calorim 127:319CrossRefGoogle Scholar
  27. 27.
    Ren Y, Yue B, Gu M, He H (2010) Materials 3:764CrossRefGoogle Scholar
  28. 28.
    Blasco T, Corma A, Martínez A, Martínez-Escolano P (1998) J Catal 177:306CrossRefGoogle Scholar
  29. 29.
    Kozhevnikov IV (1995) Catal Rev 37:311CrossRefGoogle Scholar
  30. 30.
    Jiang Y, Deng J, Xie S, Yang S, Dai H (2015) Ind Eng Chem Res 54:900CrossRefGoogle Scholar
  31. 31.
    Yu X, Li J, Wei Y, Zhao Z, Liu J, Jin B, Duan A, Jiang G (2014) Ind Eng Chem Res 53:9653CrossRefGoogle Scholar
  32. 32.
    Jiao J, Wei Y, Zhao Z, Zhong W, Liu J, Li J, Duan A, Jiang G (2015) Catal Today 258:319CrossRefGoogle Scholar
  33. 33.
    Liu Y, Liu B, Wang Q, Li C, Hu W, Liu Y, Jing P, Zhao W, Zhang J (2012) J Catal 296:65CrossRefGoogle Scholar
  34. 34.
    Guo Y, Yang Y, Hu C, Guo C, Wang E, Zou Y, Feng S (2002) J Mater Chem 12:3046CrossRefGoogle Scholar
  35. 35.
    Yang Y, Guo Y, Hu C, Jiang C, Wang E (2003) J Mater Chem 13:1686CrossRefGoogle Scholar
  36. 36.
    Ernst V, Barbaux Y, Courtine P (1987) Catal Today 1:167CrossRefGoogle Scholar
  37. 37.
    Bayer R, Marchal-Roch C, Liu FX, Tézé A, Hervé G (1996) J Mol Catal A 114:277CrossRefGoogle Scholar
  38. 38.
    Langpape M, Millet JMM (2000) Appl Catal A 200:89CrossRefGoogle Scholar
  39. 39.
    Blouet-Crusson E, Rigole M, Fournier M, Aboukaïs A, Daubrege F, Hecquet G, Guelton M (1999) Appl Catal A 178:69CrossRefGoogle Scholar
  40. 40.
    Langpape M, Millet JMM, Ozkan US, Delichère P (1999) J Catal 181:80CrossRefGoogle Scholar
  41. 41.
    Marchal-Roch C, Bayer R, Moisan JF, Tézé A, Hervé G (1996) Top Catal 3:407CrossRefGoogle Scholar
  42. 42.
    Marchal-Roch C, Laronze N, Guillou N, Tézé A, Hervé G (2000) Appl Catal A 199:33CrossRefGoogle Scholar
  43. 43.
    Jiang Y, Wang Y, Wang H, Zhou L, Gao J, Zhang Y, Zhang X, Wang X, Li J (2015) New J Chem 39:978CrossRefGoogle Scholar
  44. 44.
    Sun M, Zhang J, Cao C, Zhang Q, Wang Y, Wan H (2008) Appl Catal A 349:212CrossRefGoogle Scholar
  45. 45.
    Villabrille P, Romanelli G, Vázquez P, Cáceres C (2004) Appl Catal A 270:101CrossRefGoogle Scholar
  46. 46.
    Stobbe-Kreemers AW, Dielis RB, Makkee M, Scholten JJF (1995) J Catal 154:175CrossRefGoogle Scholar
  47. 47.
    Li XK, Zhao J, Ji WJ, Zhang ZB, Chen Y, Au CT, Han S, Hibst H (2006) J Catal 237:58CrossRefGoogle Scholar
  48. 48.
    Misono M, Nojiri N (1990) Appl Catal 64:1CrossRefGoogle Scholar
  49. 49.
    Marosi L, Cox G, Tenten A, Hibst H (2000) J Catal 194:140CrossRefGoogle Scholar
  50. 50.
    Zhang H, Yan R, Li Y, Diao Y, Wang L, Zhang S (2013) Ind Eng Chem Res 52:4484CrossRefGoogle Scholar
  51. 51.
    Cao YL, Wang L, Zhou LL, Zhang GJ, Xu BH, Zhang SJ (2017) Ind Eng Chem Res 56:653CrossRefGoogle Scholar
  52. 52.
    Zhou L, Wang L, Cao Y, Diao Y, Yan R, Zhang S (2017) Mol Catal 438:47CrossRefGoogle Scholar
  53. 53.
    Kim H, Ji CJ, Yeom SH, Lee KY, Song IK (2006) J Mol Catal A 248:21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xinxin Ma
    • 1
  • Tingting Wang
    • 1
  • Minna Zhang
    • 1
  • Wancheng Zhu
    • 1
  • Zhaoshun Zhang
    • 1
  • Heng Zhang
    • 1
  1. 1.School of Chemistry and Chemical EngineeringQufu Normal UniversityQufuChina

Personalised recommendations