Catalysis Letters

, Volume 148, Issue 2, pp 779–786 | Cite as

Chiral Pyrrolidine Bridged Polyhedral Oligomeric Silsesquioxanes as Heterogeneous Catalysts for Asymmetric Michael Additions

  • Torsak Luanphaisarnnont
  • Sasikarn Hanprasit
  • Vetiga Somjit
  • Vuthichai Ervithayasuporn
Article
  • 101 Downloads

Abstract

A chiral pyrrolidine bridged polyhedral oligomeric silsesquioxane (SQ) was synthesized, characterized, and used as an effective heterogeneous catalyst. The synthesis involves two simple steps: nucleophilic substitution between benzylchloride functionalized SQ and imidazoyl pyrrolidine carboxylate and subsequent deprotection. The catalyst was isolated by simple filtration. The SQ-supported chiral pyrrolidine catalyst was used as a heterogeneous catalyst in an asymmetric Michael addition into nitrostyrenes under room temperature and neat condition, giving the product in excellent yields (85–91%), diastereoselectivities (up to 99:1) and enantioselectivities (95–98%). The catalyst can be recycled by a simple filtration without a significant loss in its reactivity and selectivity.

Graphical Abstract

Keywords

Silsesquioxane POSS Asymmetric catalysis Michael reaction Heterogeneous catalysis 

Notes

Acknowledgements

This research was supported by Thailand Research Fund (MRG5980118 for T.L.), the Central Instrument Facility, the Faculty of Science, Mahidol University, and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commision (OHEC), Ministry of Education. S.H. thanks a graduate student financial support from TRF IRG5980007.

Supplementary material

10562_2017_2286_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1221 KB)
10562_2017_2286_MOESM2_ESM.dtd (42 kb)
Supplementary material 2 (DTD 42 KB)

References

  1. 1.
    Beller M, Renken A, van Santen RA (2012) Catalysis: from principles to applications. Wiley, WeinheimGoogle Scholar
  2. 2.
    Liu H, Zheng S, Nie K (2005) Macromolecules 38:5088CrossRefGoogle Scholar
  3. 3.
    Soai K, Watanabe M, Yamamoto A (1990) J Org Chem 55:4832CrossRefGoogle Scholar
  4. 4.
    Heckel A, Seebach D (2000) Angew Chem Int Ed 39:163CrossRefGoogle Scholar
  5. 5.
    Fraile JM, Mayoral JA, Serrano J, Pericas MA, Sola L, Castellnou D (2003) Org Lett 5:4333CrossRefGoogle Scholar
  6. 6.
    Kawasaki T, Araki Y, Hatase K, Suzuki K, Matsumoto A, Yokoi T, Kubota Y, Tatsumi T, Soai K (2015) Chem Commun 51:8742CrossRefGoogle Scholar
  7. 7.
    Cheng T, Zhao Q, Zhang D, Liu G (2015) Green Chem 17:2100CrossRefGoogle Scholar
  8. 8.
    del Pozo C, Corma A, Iglesias M, Sánchez F (2011) Green Chem 13:2471CrossRefGoogle Scholar
  9. 9.
    Croissant JG, Cattoën X, Durand JO, Man MWC, Khashab NM (2016) Nanoscale 8:19945CrossRefGoogle Scholar
  10. 10.
    Hosseini HG, Doustkhah E, Kirillova MV, Rostamnia S, Mahmoudi G, Kirillov A (2017) Appl Catal A 548:96CrossRefGoogle Scholar
  11. 11.
    Rostamnia S, Gholipour B, Hossenini HG (2016) Process Saf Environ Prot 100:74CrossRefGoogle Scholar
  12. 12.
    Rostamia S, Hossieni HG, Doustkhah E (2015) J Organomet Chem 791:18CrossRefGoogle Scholar
  13. 13.
    Cordes DB, Lickiss PD, Rataboul F (2010) Chem Rev 110:2081CrossRefGoogle Scholar
  14. 14.
    Hanprasit S, Tungkijanansin N, Prompawilai A, Eangpayung S, Ervithayasuporn V (2016) Dalton Trans 45:16117CrossRefGoogle Scholar
  15. 15.
    Chimjarn S, Kunthom R, Chancharone P, Sodkhomkhum R, Sangtrirutnugul P, Ervithayasuporn V (2015) Dalton Trans 44:916CrossRefGoogle Scholar
  16. 16.
    Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S (2017) Chem Commun 53:12108CrossRefGoogle Scholar
  17. 17.
    Ervithayasuporn V, Abe J, Wang X, Matsushima T, Murata H, Kawakami Y (2010) Tetrahedron 66:9348CrossRefGoogle Scholar
  18. 18.
    Zheng W, Lu C, Yang G, Chen Z, Nie J (2015) Catal Commun 62:34CrossRefGoogle Scholar
  19. 19.
    Moreau JJE, Vellutini L, Man MWC, Bied C (2003) Chem Eur J 9:1594CrossRefGoogle Scholar
  20. 20.
    Duchateau R (2002) Chem Rev 102:3525CrossRefGoogle Scholar
  21. 21.
    Bivona LA, Giacalone F, Carbonell E, Gruttadauria M, Aprile C (2016) ChemCatChem 8:1685CrossRefGoogle Scholar
  22. 22.
    Zhang C, Leng Y, Jiang P, Lu D (2016) RSC Adv 6:57183CrossRefGoogle Scholar
  23. 23.
    Mohapatra S, Chaiprasert T, Sodkhomkhum R, Kunthom R, Hanprasit S, Sangtrirutnugul P, Ervithayasuporn V (2016) ChemistrySelect 1:5353CrossRefGoogle Scholar
  24. 24.
    Sangtrirutnugul P, Chaiprasert T, Hunsiri W, Jitjaroendee T, Songkhum P, Laohhasurayotin K, Osotchan T, Ervithayasuporn V (2017) ACS Appl Mater Interfaces 9:12812CrossRefGoogle Scholar
  25. 25.
    Safaei-Ghomi J, Nazemzadesh SH, Shahbazi-Alavi H (2016) Appl Organomet Chem 30:911CrossRefGoogle Scholar
  26. 26.
    Bivona LA, Fichera O, Fusaro L, Giacalone F, Buaki-Sogo M, Gruttaduaria M, Aprile C (2015) Catal Sci Technol 5:5000CrossRefGoogle Scholar
  27. 27.
    Kunthom R, Jaroentomeechai T, Ervithayasuporn V (2017) Polymer 108:173CrossRefGoogle Scholar
  28. 28.
    Pochwala M, Bialek M, Franczyk A, Marciniec B, Czaja K (2016) Eur Polym J 79:121CrossRefGoogle Scholar
  29. 29.
    Tang S, Jin R, Zhang H, Yao H, Zhuang J, Liu G, Li H (2012) Chem Commun 48:6286CrossRefGoogle Scholar
  30. 30.
    Berner OM, Tedeschi L, Enders D (2002) Eur J Org Chem 2002:1877CrossRefGoogle Scholar
  31. 31.
    Almasi D, Alonson DA, Najera C (2007) Tetrahedron: Asymmetry 18:299CrossRefGoogle Scholar
  32. 32.
    Ishii T, Fujioka S, Sekiguchi Y, Kotsuki H (2004) J Am Chem Soc 126:9558CrossRefGoogle Scholar
  33. 33.
    Reyes-Rangel G, Vargas-Caporali J, Juaristi E (2017) Tetrahedron 73:4707CrossRefGoogle Scholar
  34. 34.
    Du J, Shuai B, Tao M, Wang G, Zhang W (2016) Green Chem 18:2625CrossRefGoogle Scholar
  35. 35.
    Li P, Wang L, Zhang Y, Wang G (2008) Tetrahedron 64:7633CrossRefGoogle Scholar
  36. 36.
    Luo S, Mi X, Zhang L, Liu S, Xu H, Cheng JP (2006) Angew Chem Int Ed 45:3093CrossRefGoogle Scholar
  37. 37.
    Tian J, Zhang C, Qi X, Yan X, Li Y, Chen L (2015) Catal Sci Technol 5:724CrossRefGoogle Scholar
  38. 38.
    Qi X, Tian J, Li Y, Chen L, Yan X (2015) Catal Commun 71:70CrossRefGoogle Scholar
  39. 39.
    Liu J, Li P, Zhang Y, Ren K, Wang L, Wang G (2010) Chirality 22:432Google Scholar
  40. 40.
    Harrison PG, Hall C (1997) Main Group Met Chem 20:515Google Scholar
  41. 41.
    Cheng G, Vautravers NR, Morris RE, Cole-Hamilton DJ (2008) Org Biomol Chem 6:4662CrossRefGoogle Scholar
  42. 42.
    Wang L, Tang R, Yang H (2013) J Korean Chem Soc 57:591CrossRefGoogle Scholar
  43. 43.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Thermochim Acta 440:36CrossRefGoogle Scholar
  44. 44.
    Jaroentomeechai T, Yingsukkamol PK, Phurat C, Somsook E, Osotchan T, Ervithayasuporn V (2012) Inorg Chem 51:12266CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations