Catalysis Letters

, Volume 148, Issue 2, pp 680–690 | Cite as

Sulphonic Acid-Functionalized Benzimidazolium Based Poly Ionic Liquid Catalyzed Esterification of Levulinic Acid

  • Avinash Ganesh Khiratkar
  • Kamlesh Rudreshwar Balinge
  • Manikandan Krishnamurthy
  • K. K. Cheralathan
  • Dipesh S. Patle
  • Vishal Singh
  • Sanyam Arora
  • Pundlik Rambhau Bhagat


Esters of levulinic acid (LA) are bio-based compounds having widespread applications and have the remarkable potential to be blended with commercial diesel or gasoline. In this study, a sulphonic acid-functionalized benzimidazolium based poly ionic liquid (SAFBPIL) catalyst was prepared and characterized by NMR, FT-IR, elemental analysis (C, H, N, S), TGA and BET surface area. Brønsted acidity was determined by anion-exchange/neutralization titration method and was found to be 5.55 mmol/g. The heterogeneous ionic liquid catalyst showed an excellent thermal stability up to 270 °C. Experiments were carried at different temperatures, LA to ethanol molar ratios, catalyst loadings and duration of the reaction in a batch reactor. The highest conversion was obtained at 70 °C using an initial LA:ethanol molar ratio of 1:10 and a catalyst loading of 15 wt% in 9 h. It was observed that ethyl levulinate (EL) could be effectively obtained over SAFBPIL with a selectivity higher than 99.5%. This is due to more acidic sites exhibited on SAFBPIL catalyst under optimized conditions. Herein, we are reporting for the first time an esterification of LA to EL using a new SAFBPIL as a catalyst. The catalyst was recycled for five runs without significant loss of catalytic activity.

Graphical Abstract


Sulphonic acid-functionalized Levulinic acid Benzimidazolium Poly ionic liquid Esterification Brønsted acid 



We gratefully acknowledge SIF DST-VIT-FIST, VIT-Vellore for providing NMR, GC–MS, FT-IR. The authors also acknowledge the financial help provided by DST-SERB (ECR/2016/001866) and ‘VIT SEED GRANT’, VIT-Vellore for carrying out this research work. The authors express gratitude to “Smart Materials Laboratory for Bio-sensing and Catalysis” for providing basic facilities.

Supplementary material

10562_2017_2284_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3385 KB)


  1. 1.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Frederick CAWJ (2006) Science 311:484–489CrossRefGoogle Scholar
  2. 2.
    Le Van Mao R, Petraccone D, Zhao Q, Dima G (2011) Catal Lett 141:271–276CrossRefGoogle Scholar
  3. 3.
    Pasquale G, Vazquez P, Romanelli G, Baronetti G (2012) Catal Commun 18:115–120CrossRefGoogle Scholar
  4. 4.
    Fang S, Ling M, Daiyu S, Xianghuan Z, Yihang G (2013) Green Chem 15:885–890CrossRefGoogle Scholar
  5. 5.
    Rackemann DW, Doherty WOS (2011) Biofuels Bioprod Bioref 5:198–214CrossRefGoogle Scholar
  6. 6.
    Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH, Kamm B, Gruber PR, Kamme M (2006) Wiley-VCH Weinheim 1:139–164Google Scholar
  7. 7.
    Mohan V, Raghavendra C, Pramod CV, Raju BD, Rama Rao KS (2014) RSC Adv 4:9660–9668CrossRefGoogle Scholar
  8. 8.
    Mohan V, Venkateshwarlu V, Pramod CV, Raju BD, Rama Rao KS (2014) Catal Sci Technol 4:1253–1259CrossRefGoogle Scholar
  9. 9.
    Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick S, Bilski RJW, Jarnefeld JL (2000) Resour Conserv Recycl 28:227–239CrossRefGoogle Scholar
  10. 10.
    Bozell JJ, Petersen JR (2010) Green Chem 12:539–554CrossRefGoogle Scholar
  11. 11.
    Weingarten R, Conner WMC, Huber GWJ (2000) Energy Environ Sci 5:7559–7574CrossRefGoogle Scholar
  12. 12.
    Nandiwale KY, Niphadkar PS, Deshpande SS, Bokade VV (2014) J Chem Technol Biotechnol 89:507–1515Google Scholar
  13. 13.
    Unlu D, Ilgen O, Hilmioglu ND(2016) Chem Eng J 302:260–268CrossRefGoogle Scholar
  14. 14.
    Yadav GD, Yadav AR (2014) Chem Eng J 243:556–563CrossRefGoogle Scholar
  15. 15.
    Siva SS, Mohan V, Suresh M, Saidulu G, Raju BD, Rama Rao KS (2015) Catal Commun 75:1–5CrossRefGoogle Scholar
  16. 16.
    Zhang J, Cao P, Yan H, Wu Z, Dou T (2016) Chem Eng J 291:82–93CrossRefGoogle Scholar
  17. 17.
    Wu M, Zhao QQ, Li J, Su XL, Wu HY, Guan XX, Zheng XC (2016) Porous Mater 2:1329–1338CrossRefGoogle Scholar
  18. 18.
    Kong X, Wu S, Li X, Liu J (2016) Energy Fuels 30:6500–6504CrossRefGoogle Scholar
  19. 19.
    Nakhate AV, Yadav GD (2016) ACS Sustain Chem Eng 4:1963–1973CrossRefGoogle Scholar
  20. 20.
    Xua Z, Wana H, Miao J, Han H, Yang C, Guana G (2010) J Mol Catal A Chem 332:152–157CrossRefGoogle Scholar
  21. 21.
    Huang YB, Yang T, Cai B, Chang X, Pan X (2016) RSC Adv 6:2106–2111CrossRefGoogle Scholar
  22. 22.
    Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Ind Eng Chem Res 33(1):21–25CrossRefGoogle Scholar
  23. 23.
    Pileidis FD, Tabassum M, Coutts S, Titirici MM (2014) Chin J Catal 35:929–936CrossRefGoogle Scholar
  24. 24.
    Amarasekara AS, Wiredu B (2014) Bioenerg Res 7:1237–1243CrossRefGoogle Scholar
  25. 25.
    Gharnati L, Walter O, Arnold U, Döring M (2011) Eur J Inorg Chem 17:2756–2762CrossRefGoogle Scholar
  26. 26.
    Yan S, DiMaggio D, Mohan S, Kim M, Salley SO, Simon Ng KY (2010) Top Catal 53:721–736CrossRefGoogle Scholar
  27. 27.
    William RH, Palkovits WR (2012) Chem Sus Chem 5:1–12CrossRefGoogle Scholar
  28. 28.
    Le Van Mao R, Zhao Q, Dima D, Petraccone D (2012) Catal Lett 141:271–276Google Scholar
  29. 29.
    Peng L, Lin L, Zhang J, Shi J, Liu S (2011) Appl Catal A 397:259–265CrossRefGoogle Scholar
  30. 30.
    Zhang W, Leng Y, Zhu D, Wu Y, Wang J (2009) Catal Commun 11:151–154CrossRefGoogle Scholar
  31. 31.
    Su F, An S, Song D, Zhang X, Lu B, Guo Y (2014) J Mater Chem A 2:14127–14138CrossRefGoogle Scholar
  32. 32.
    Cirujano FG, Corma A, Xamena FXL (2015) Chem Eng Sci 124:52–60CrossRefGoogle Scholar
  33. 33.
    Li H, Fang Z, Luo J, Yang S (2017) Appl Catal B 200:182–191CrossRefGoogle Scholar
  34. 34.
    Piskuna AS, van de Bovenkampa SS, Rasrendra CB, Winkelman GJM, Heeres HJ (2016) Appl Catal A 525:158–167CrossRefGoogle Scholar
  35. 35.
    Tulchinsky ML, Briggs JR (2016) ACS Sustainable Chem Eng 4:4089–4093CrossRefGoogle Scholar
  36. 36.
    Wu M, Zhao QQ, Li J, Su XL, Wu HY, Guan XX, Zheng XC (2016) J Porous Mater 23:1329–1338CrossRefGoogle Scholar
  37. 37.
    Kong X, Wu S, Li X, Liu J (2015) Energy Fuels 30:6500–6504CrossRefGoogle Scholar
  38. 38.
    Khusnutdinov RI, Baiguzina AR, Smirnov AA, Mukminov RR, Dzhemilev UM (2007) Russ J Appl Chem 80(10):1687–1690CrossRefGoogle Scholar
  39. 39.
    Oliveira BL, Da Silva VT (2014) Catal Today 234:257–263CrossRefGoogle Scholar
  40. 40.
    Budarin VL, Clark JH, Luque R, Macquarrie DJ (2007) Chem Commun 6:634–636CrossRefGoogle Scholar
  41. 41.
    Melero JA, Morales G, Iglesias J, Paniagua M, Hernández B, Penedo S (2013) Appl Catal A 466:116–122CrossRefGoogle Scholar
  42. 42.
    Kuwahara Y, Kaburagi W, Nemoto K, Fujitani T (2014) Appl Catal A 476:186–196CrossRefGoogle Scholar
  43. 43.
    Leng Y, Wang J, Zhu D, Wu Y, Zhao P (2009) J Mol Catal A Chem 313:1–6CrossRefGoogle Scholar
  44. 44.
    Peng L, Lin L, Li H, Yang Q (2011) Appl Energy 88:4590–4596CrossRefGoogle Scholar
  45. 45.
    Dharne S, Bokade VV (2011) J Nat Gas Chem 20:18–24CrossRefGoogle Scholar
  46. 46.
    Varkolu M, Moodley V, Potwana FSW, Jonnalagadda SW, van Zyl WE (2017) Reac Kinet Mech Cat 120:69–80CrossRefGoogle Scholar
  47. 47.
    Sankar ES, Mohan V, Suresh M, Saidulu G, Raju BD, Rama Rao KS (2016) Catal Commun 75:1–5CrossRefGoogle Scholar
  48. 48.
    Chen Y, Zhang X, Dong M, Wu Y, Zheng G, Huang J, Guan X, Zheng X (2016) J Taiwan Inst Chem Eng 61:47–155Google Scholar
  49. 49.
    Tejero MA, Ramírez E, Fité C, Tejero J, Cunill F (2016) Appl Catal A 517:56–66CrossRefGoogle Scholar
  50. 50.
    Shagufta I, Dhar RA (2017) Catal Surv Asia 21(2):53–69CrossRefGoogle Scholar
  51. 51.
    Leng Y, Jiang P, Wang J (2012) Catal Commun 25:41–44CrossRefGoogle Scholar
  52. 52.
    Pourjavadi A, Hosseinia SH, Soleyman R (2012) J Mol Catal A Chem 365:55–59CrossRefGoogle Scholar
  53. 53.
    Khiratkar AG, Muskawar PN, Bhagat PR (2016) RSC Adv 6:105087–105093CrossRefGoogle Scholar
  54. 54.
    Khiratkar AG, Kumar SS, Bhagat PR (2016) RSC Adv 6:37757–37764CrossRefGoogle Scholar
  55. 55.
    Kore R, Srivastava R (2011) J Mol Catal A Chem 345:117–126CrossRefGoogle Scholar
  56. 56.
    Zillillah TG, Li Z (2012) Green Chem 14:3077–3086CrossRefGoogle Scholar
  57. 57.
    Vafaeezadeh M, Hashemi MM (2014) Chem Eng J 250:35–41CrossRefGoogle Scholar
  58. 58.
    Pourjavadi A, Hosseini SH, Doulabi M, Fakoorpor SM, Seidi F (2012) ACS Catal 2:1259–1266CrossRefGoogle Scholar
  59. 59.
    Kore R, Dhilip Kumar TJ, Srivastava R (2012) J Mol Catal A Chem 360:61–70CrossRefGoogle Scholar
  60. 60.
    Suwannakarn S, Lotero E, Goodwin JG (2007) Ind Eng Chem Res 46:7050–7056CrossRefGoogle Scholar
  61. 61.
    Liang X (2013) Ind Eng Chem Res 52:6894–6900CrossRefGoogle Scholar
  62. 62.
    Macquarrie DJ (2001) Platin Metal Rev 45:102–110Google Scholar
  63. 63.
    Fernandes DR, Rocha AS, Mai EF, Mota CJA, da Silva VT (2012) Appl Catal A 425–426:199–204CrossRefGoogle Scholar
  64. 64.
    Yan K, Wu G, Wen J, Chen A (2013) Catal Commun 34:58–63CrossRefGoogle Scholar
  65. 65.
    Nandiwale KY, Sonar SK, Niphadkar PS, Joshi PN, Deshpande SS, Patil VS, Bokade VV (2013) Appl Catal A 460–461:90–98CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Avinash Ganesh Khiratkar
    • 1
  • Kamlesh Rudreshwar Balinge
    • 1
  • Manikandan Krishnamurthy
    • 1
  • K. K. Cheralathan
    • 1
  • Dipesh S. Patle
    • 2
  • Vishal Singh
    • 2
  • Sanyam Arora
    • 2
  • Pundlik Rambhau Bhagat
    • 1
  1. 1.Department of Chemistry, School of Advanced SciencesVITVelloreIndia
  2. 2.Department of Chemical Engineering, School of Civil and Chemical EngineeringVITVelloreIndia

Personalised recommendations