Catalysis Letters

, Volume 148, Issue 2, pp 576–585 | Cite as

An Efficient Cr-TUD-1 Catalyst for Oxidative Dehydrogenation of Propane to Propylene with CO2 as Soft Oxidant

  • Abhishek Burri
  • Md Abdul Hasib
  • Yong-Hawn Mo
  • Benjaram M. Reddy
  • Sang-Eon Park


A series of Cr-TUD-1 catalysts with various loadings of chromium (3, 5, 7, and 9 wt%) were prepared by microwave irradiation and explored for oxidative dehydrogenation of propane to propylene utilizing CO2 as soft oxidant. The microwave irradiation reduced the synthesis time and the resulting Cr-TUD-1 catalysts exhibited a high specific surface area of more than 600 m2 g−1. The synthesized catalysts were characterized by various techniques including XRD, XPS, TEM, UV–vis DRS, BET surface area, and pore size distribution to understand the physicochemical properties, and to correlate with the catalytic activity. Among various compositions, the 7% Cr-TUD-1 catalyst exhibited a high propane conversion (~ 45%) with better propylene product selectivity (~ 75%). The Cr-TUD-1 catalyst was also found to be quite stable up to 8 h of time-on-stream investigated. As revealed by the characterization techniques, the inter-convertible Cr6+ to Cr3+/2+ species are very crucial for the observed better catalytic activity of these materials. The TUD-1 enables to encapsulate the chromium nanoparticles in the porous silica structure with high dispersion which help in maintaining the better catalytic performance.

Graphical Abstract


Cr-TUD-1 Oxidative dehydrogenation Carbon dioxide utilization Soft oxidant Propane Propylene 



The authors thank Inha University and the National Research Foundation of Korea (NRF) for financial grant funded by the Korean Government (MEST) (NRF-2016M3D3A1A01913275). BMR thanks Korea Federation of Science and Technology (KOFST) for the offer of Invitation Scientist position under the Brain Pool program.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10562_2017_2282_MOESM1_ESM.docx (387 kb)
Supplementary material 1 (DOCX 387 KB)


  1. 1.
    Cavani F, Ballarini N, Cericola A (2007) Catal Today 127:113–120CrossRefGoogle Scholar
  2. 2.
    Ren Y, Zhang F, Hua W, Yue Y, Gao Z (2009) Catal Today 148:316–322CrossRefGoogle Scholar
  3. 3.
    Chen M, Xu J, Liu YM, Cao Y, He HY, Zhuang JH (2010) Appl Catal A 377:35–41CrossRefGoogle Scholar
  4. 4.
    Schimmoeller B, Jiang Y, Pratsinis SE, Baiker A (2010) J Catal 274:64–75CrossRefGoogle Scholar
  5. 5.
    Liu YM, Cao Y, Yan SR, Dai WL, Fan KN (2003) Catal Lett 88:61–67CrossRefGoogle Scholar
  6. 6.
    Gonzalez JS, Robles JM, Rodriguez MA, Torres PM, Castellon ER, Lopez AJ (2000) Catal Lett 64:209–214CrossRefGoogle Scholar
  7. 7.
    Davies T, Taylor HS (2004) Catal Lett 93:151–154CrossRefGoogle Scholar
  8. 8.
    Raju G, Reddy BM, Abhishek B, Mo Y-H, Park S-E (2012) Appl Catal A 423:168–175CrossRefGoogle Scholar
  9. 9.
    Ansari MB, Park S-E (2012) Energy Environ Sci 5:9419–9437CrossRefGoogle Scholar
  10. 10.
    Atanga MA, Rezaei F, Jawad A, Fitch M, Rownaghi AA (2018) Appl Catal B 220:429–445CrossRefGoogle Scholar
  11. 11.
    Mukherjee D, Park S-E, Reddy BM (2016) J CO2 Util 16:301–312CrossRefGoogle Scholar
  12. 12.
    Reddy BM, Lee SC, Han DS, Park S-E (2009) Appl Catal B 87:230–238CrossRefGoogle Scholar
  13. 13.
    Takahara I, Chang WC, Mimura N, Saito M (1998) Catal Today 45:55–59CrossRefGoogle Scholar
  14. 14.
    Abello MC, Gomez MF, Ferretti O (2003) Catal Lett 87:43–49CrossRefGoogle Scholar
  15. 15.
    Cherian M, Rao MS, Hirt AM, Wachs IE, Deo G (2002) J Catal 211:482–495CrossRefGoogle Scholar
  16. 16.
    Clark A (1969) Catal Rev 3:145–174CrossRefGoogle Scholar
  17. 17.
    Weckhuysen BM, Schoonheydt RA (1999) Catal Today 51:215–221CrossRefGoogle Scholar
  18. 18.
    Subrahmanyam C, Louis B, Rainone F, Viswanathan B, Renken A, Varadarajan TK (2003) Appl Catal A 241:205–215CrossRefGoogle Scholar
  19. 19.
    Yamashita H, Yoshizaki K, Ariyuki M, Higashimoto S, Che M, Anpo M (2001) Chem Commun 5:435–436CrossRefGoogle Scholar
  20. 20.
    Yamashita H, Ariyuki M, Shigemoto S, Zhang SG, Chang JS, Park S-E, Lee LM, Matsumura Y, Anpo M (1999) J Synchrotron Radiat 6:453–454CrossRefGoogle Scholar
  21. 21.
    Rao TVM, Zahidi EM, Sayari A (2009) J Mol Catal A 301:159–165CrossRefGoogle Scholar
  22. 22.
    Hakuli A, Kytökivi A, Krause AOI (2000) Appl Catal A 190:219–232CrossRefGoogle Scholar
  23. 23.
    Liu L, Li H, Zhang Y (2006) J Phys Chem B 110:15478–15485CrossRefGoogle Scholar
  24. 24.
    Kumar MS, Hammer N, Rønning M, Holmen A, Chen D, Walmsley JC, Øye G (2009) J Catal 261:116–128CrossRefGoogle Scholar
  25. 25.
    Weckhuysen BM, Wachs IE, Schoonheydt RA (1996) Chem Rev 96:3327–3350CrossRefGoogle Scholar
  26. 26.
    Baek J, Yun HJ, Yun D, Choi Y, Yi J (2012) ACS Catal 2:1893–1903CrossRefGoogle Scholar
  27. 27.
    Jansen JC, Shan Z, Marchese L, Zhou W, vd Puil N, Maschmeyer T (2001) Chem Commun 8:713–714CrossRefGoogle Scholar
  28. 28.
    Matos J, García A, Park S-E (2011) Appl Catal A 393:359–366CrossRefGoogle Scholar
  29. 29.
    Shan Z, Jansen JC, Zhou W, Maschmeyer T (2003) Appl Catal A 254:339–343CrossRefGoogle Scholar
  30. 30.
    Hamdy MS, Mul G, Jansen JC, Ebaid A, Shan Z, Overweg AR, Maschmeyer T (2005) Catal Today 100:255–260CrossRefGoogle Scholar
  31. 31.
    Hamdy MS, Berg O, Jansen JC, Maschmeyer T, Moulijn JA, Mul G (2005) Chem Eur J 12:620–628CrossRefGoogle Scholar
  32. 32.
    Karmakar B, Sinhamahapatra A, Panda AB, Banerji J, Chowdhury B (2011) Appl Catal A 392:111–117CrossRefGoogle Scholar
  33. 33.
    Clerici MG, Bellussi G, Romano U (1991) J Catal 129:159–167CrossRefGoogle Scholar
  34. 34.
    Arends IWCE., Sheldon RA, Wallau M, Schuchardt U (1997) Angew Chem Int Ed 36:1144–1163CrossRefGoogle Scholar
  35. 35.
    Jeong S-M, Burri A, Jiang N, Park S-E (2014) Appl Catal A 476:39–44CrossRefGoogle Scholar
  36. 36.
    Arafat A, Jansen JC, Ebaid AR, van Bekkum H (1993) Zeolites 13:162–165CrossRefGoogle Scholar
  37. 37.
    Park M, Komarneni S (1998) Microporous Mesoporous Mater 20:39–44CrossRefGoogle Scholar
  38. 38.
    Jhung SH, Jin T, Hwang YK, Chang J-S (2007) Chem Eur J 13:4410–4417CrossRefGoogle Scholar
  39. 39.
    Park S-E, Chang J-S, Hwang YK, Kim DS, Jhung SH, Hwang JS (2004) Catal Surv Asia 8:91–110CrossRefGoogle Scholar
  40. 40.
    Park S-E, Jiang N (2010) Morphological synthesis of zeolites. In: Čejka J, Corma A, Zones S (eds) Zeolites and catalysis: synthesis, reactions and applications, Chap. 5. Wiley, WeinheimGoogle Scholar
  41. 41.
    Reddy BM, Bharali P, Seo YH, Prasetyanto EA, Park S-E (2008) Catal Lett 126:125–133CrossRefGoogle Scholar
  42. 42.
    Jin H, Ansari MB, Park S-E (2014) Appl Catal A 472:184–190CrossRefGoogle Scholar
  43. 43.
    IUPAC Recommendations (1994) J Pure Appl Chem 66:1739–1758Google Scholar
  44. 44.
    Telalovic S, Ramanathan A, Mul G, Hanefeld U (2010) J Mater Chem 20:642–658CrossRefGoogle Scholar
  45. 45.
    Michorczyk P, Ogonowski J (2012) Chem Commun 48:7283–7285CrossRefGoogle Scholar
  46. 46.
    Michorczyk P, Ogonowski J, Zenczak K (2011) J Mol Catal A 349:1–12CrossRefGoogle Scholar
  47. 47.
    Merryfield R, McDaniel M, Parks G (1982) J Catal 77:348–359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Nano-Green Catalysis and Nano Center for Fine Chemical Fusion Technology, Department of ChemistryInha UniversityIncheonRepublic of Korea
  2. 2.Inorganic and Physical Chemistry DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations