Catalysis Letters

, Volume 148, Issue 2, pp 564–575 | Cite as

CO2 Reforming of Methane Over Nickel Catalysts Supported on La-Doped MCF

  • Lin Li
  • Zhen Yang
  • Di Hu
  • Jie Shan
  • Yu-Hua Zhang
  • Jin-Lin Li


In this work, a new kind of heterostructured mesoporous materials (x%La2O3–MCF) for supporting nickel nanoparticles was developed by surface modification of mesoporous cellulous foam silica (MCF) with La2O3 in a monolayer/submonolayer state through an in situ growth method in order to make use of the advantages of mesoporous structure of MCF and basic sites of La2O3 at the same time. Nickel catalysts supported on these materials (Ni/x%La2O3–MCF) were prepared by impregnation method. The received mesoporous materials possessing predominant textural properties and thermal stabilities were investigated as catalysts for the carbon dioxide reforming of methane, exhibiting not only high activity but also good stability after a steady-state reaction for 10 h. The influence of La2O3 loadings on the performance of Ni/x%La2O3–MCF catalysts to the carbon dioxide reforming of methane was studied in this paper, and it was found that with La2O3 wt% = 10%, the Ni-based catalyst Ni/10%La2O3–MCF showed the highest activity, and exhibited superior stabilization. Several technologies were used to characterize the catalysts, such as transmission electron microscopy, X-ray diffraction patterns, physisorption of N2, X-ray photoelectron spectroscopy, carbon dioxide temperature programmed desorption and so on. The relationship between physicochemical properties of catalysts and catalytic performances has been investigated in detail.

Graphical Abstract

A new kind of heterostructured mesoporous materials (x%La2O3–MCF) for supporting nickel nanoparticles was developed by surface modification of MCF with La2O3 in a monolayer/submonolayer state. The received mesoporous materials were investigated as catalysts for the carbon dioxide reforming of methane, exhibiting not only high activity but also good stability after a steady-state reaction for 10 h.


La2O3 MCF Nickel catalysts Carbon dioxide reforming of methane Activity Stability 



Financial supports of this work by the National Natural Science Foundation of China (21403304) are greatly appreciated.


  1. 1.
    Xiao Q, Xu J, Zhang J, Sun Y, Zhu Y (2017) J Energy Chem 26:325CrossRefGoogle Scholar
  2. 2.
    Qian L, Cai W, Zhang L, Ye L, Li J, Tang M, Yue B, He H (2015) Appl Catal B 164:168CrossRefGoogle Scholar
  3. 3.
    Zhang L, Wang X, Shang X, Tan M, Ding W, Lu X (2017) J Energy Chem 26:93CrossRefGoogle Scholar
  4. 4.
    Shang R, Guo X, Mu S, Wang Y, Jin G, Kosslick H, Schulz A, Guo XY (2011) Int J Hydrog Energy 36:4900CrossRefGoogle Scholar
  5. 5.
    Fan MS, Abdullah AZ, Bhatia S (2009) ChemCatChem 1:192CrossRefGoogle Scholar
  6. 6.
    Bitter JH, Seshan K, Lercher JA (1997) J Catal 176:93CrossRefGoogle Scholar
  7. 7.
    Wang S, Lu GQ (1996) Energy Fuels 10:896CrossRefGoogle Scholar
  8. 8.
    Baudouin D, Rodemerck U, Krumeich F, Mallmann A de, Szeto KC, Ménard H, Veyre L, Candy JP, Webb PB, Thieuleux C, Copéret C (2013) J Catal 297:27CrossRefGoogle Scholar
  9. 9.
    Zhang ZL, Verykios XE (1994) Catal Today 21:589CrossRefGoogle Scholar
  10. 10.
    Wang N, Yu X, Wang Y, Chu W, Liu M (2013) Catal Today 212:98CrossRefGoogle Scholar
  11. 11.
    Zhang L, Li L, Zhang Y, Zhao Y, Li J (2014) J Energy Chem 23:66CrossRefGoogle Scholar
  12. 12.
    Xu WY, Xu NN, Long W, Hu L, Hong SG (2013) Appl Mech Mater 291–294:795CrossRefGoogle Scholar
  13. 13.
    Xu BQ, Wei JM, Wang HY, Sun KQ, Zhu QM (2001) Catal Today 68:217CrossRefGoogle Scholar
  14. 14.
    Nandini AP, Kamal KP, Subhash CD (2007) Ind Eng Chem Res 46:1731CrossRefGoogle Scholar
  15. 15.
    Habibi N, Rezaei M, Majidian N, Andache M (2014) J Energy Chem 23:435CrossRefGoogle Scholar
  16. 16.
    Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) J Catal 209:365CrossRefGoogle Scholar
  17. 17.
    Xu L, Song H, Chou L (2012) ACS Catal 2:1331CrossRefGoogle Scholar
  18. 18.
    Sokolov S, Kondratenko EV, Pohl MM, Barkschat A, Rodemerck U (2012) Appl Catal B 113–114: 19Google Scholar
  19. 19.
    Liu H, Li Y, Wu H, Takayama H, Miyake T, He D (2012) Catal Commun 28:168CrossRefGoogle Scholar
  20. 20.
    Liu D, Lau R, Borgna A, Yang Y (2009) Appl Catal A 358:110CrossRefGoogle Scholar
  21. 21.
    Liu Z, Zhou J, Cao K, Yang W, Gao H, Wang Y, Li H (2012) Appl Catal B 125:324CrossRefGoogle Scholar
  22. 22.
    Bachiller-Baeza B, Mateos-Pedrero C, Soria MA, Guerrero-Ruiz A, Rodemerck U, Rodríguez-Ramos I (2013) Appl Catal B 129:450CrossRefGoogle Scholar
  23. 23.
    Frusteri F, Arena F, Calogero G, Torre T, Parmaliana A (2001) Catal Commun 2:49CrossRefGoogle Scholar
  24. 24.
    Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K (2000) Ind Eng Chem Res 39:1891CrossRefGoogle Scholar
  25. 25.
    Wang YH, Liu HM, Xu BQ (2009) J Mol Catal A 299:44CrossRefGoogle Scholar
  26. 26.
    Zhang ZL, Verykios XE (1995) J Chem Soc Chem Commun 1:71CrossRefGoogle Scholar
  27. 27.
    Liu ZP, Jenkins SJ, King DA (2004) Phys Rev Lett 93:156102CrossRefGoogle Scholar
  28. 28.
    Li L, Tian C, Chai SH, Binder A, Brown S, Veith GM, Dai S (2014) Catal Commun 46:234CrossRefGoogle Scholar
  29. 29.
    Li L, Chai SH, Binder A, Brown S, Veith GM, Dai S (2014) Catal Lett 144:912CrossRefGoogle Scholar
  30. 30.
    Schmidt-Winkel P, Lukens WW, Yang PD, Margolese DI, Lettow JS, Ying JY, Stucky GD (2000) Chem Mater 12:686CrossRefGoogle Scholar
  31. 31.
    Schmidt-Winkel P, Lukens WW, Zhao DY, Yang PD, Chmelka BF, Stucky GD (1999) J Am Chem Soc 121:254CrossRefGoogle Scholar
  32. 32.
    Morris SM, Fulvio PF, Jaroniec M (2008) J Am Chem Soc 130:15210CrossRefGoogle Scholar
  33. 33.
    Xie YC, Tang YQ (1990) Adv Catal 37:1Google Scholar
  34. 34.
    Nagaoka K, Seshan K, Aika KI, Lercher JA (2001) J Catal 197:34CrossRefGoogle Scholar
  35. 35.
    Li L, Huo M, Zhang Y, Li J (2017) J Porous Mater. Google Scholar
  36. 36.
    Li X, Hu Q, Yang Y, Wang Y, He F (2012) Appl Catal A 413–414:163Google Scholar
  37. 37.
    Zhu K, Hua W, Deng W, Richards RM (2012) Eur J Inorg Chem 2012: 2869CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Verykios XE, MacDonald SM, Affrossman S (1996) J Phys Chem 100:744CrossRefGoogle Scholar
  39. 39.
    Li X, Li D, Tian H, Zeng L, Zhao ZJ, Gong J (2017) Appl Catal B 202:683CrossRefGoogle Scholar
  40. 40.
    Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) Int J Hydrog Energy 40:2445CrossRefGoogle Scholar
  41. 41.
    Ozkara-Aydınoglu S (2010) Int J Hydrog Energy 35:12821CrossRefGoogle Scholar
  42. 42.
    Xu L, Song H, Chou L (2011) Appl Catal B 108:177CrossRefGoogle Scholar
  43. 43.
    Zhang L, Li L, Li J, Zhang Y, Hu J (2014) Top Catal 57:619CrossRefGoogle Scholar
  44. 44.
    Rezaei M, Alavi SM, Sahebdelfar S, Yan Z-F (2008) Energy Fuels 22:2195CrossRefGoogle Scholar
  45. 45.
    Tian C, Chai SH, Zhu X, Wu Z, Binder A, Bauer JC, Brwon S, Chi M, Veith GM, Guo Y, Dai S (2012) J Mater Chem 22:25227CrossRefGoogle Scholar
  46. 46.
    Liu C, Ye J, Jiang J, Pan Y (2011) ChemCatChem 3:529CrossRefGoogle Scholar
  47. 47.
    Alvara EN, Rezaei M (2009) Scr Mater 61:212CrossRefGoogle Scholar
  48. 48.
    Fan MS, Abdullah AZ, Bhatia S (2010) Appl Catal B 100:365CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials ScienceSouth-Central University for NationalitiesWuhanChina

Personalised recommendations