Skip to main content
Log in

Parametric Optimisation of Solution Combustion Synthesis Catalysts and Their Application for the Aqueous Hydrogenation of Maleic Acid

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ni-based nano-catalysts were synthesized by solution combustion synthesis. Nickel aluminate spinels and Ni–Al alloys yielded during combustion, although it is difficult to be produced at low temperatures. A multistage mechanism of the Ni–NiAl catalysts formation was identified which indicates that SCS is general and can be utilized for the preparation of many different types of metal–alloys nanostructures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts – a review. Appl Catal A 213(1):1–24

    Article  CAS  Google Scholar 

  2. Landau RN, Singh UK, Gortsema F, Sun Y, Gomolka SC, Lam T et al (1995) A reaction calorimetric investigation of the hydrogenation of a substituted pyrazine. J Catal 157(1):201–208

    Article  CAS  Google Scholar 

  3. Blaser HU, Jalett HP, Spindler F (1996) Enantioselective hydrogenation of α-keroesters: comparison of homogeneous and heterogeneous catalysts. J Mol Catal A 107(1–3):85–94

    Article  CAS  Google Scholar 

  4. Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Cat Rev - Sci Eng 40(1–2):81–126

    Article  CAS  Google Scholar 

  5. Pintar A, Batista J, Levec J, Kajiuchi T (1996) Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Appl Catal B 11(1):81–98

    Article  CAS  Google Scholar 

  6. Vaidya PD, Mahajani VV (2003) Kinetics of aqueous phase hydrogenation of maleic acid to succinic acid over an Ru/Al2O3 catalyst. J Chem Technol Biotechnol 78(5):504–511

    Article  CAS  Google Scholar 

  7. Zeikus JG, Jain MK, Elanhovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51(5):545–552

    Article  CAS  Google Scholar 

  8. Harmon RE, Gupta SK, Brown DJ (1973) Hydrogenation of organic compounds using homogeneous catalysts. Chem Rev 73(1):21–52

    Article  CAS  Google Scholar 

  9. Yang XL, Liu HF (1997) Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters. Appl Catal A 164(1–2):97–203

    Google Scholar 

  10. Han XX, Zhou RX, Zheng XM, Jiang H (2003) Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts. J Mol Catal A 193(1–2):103–108

    Article  CAS  Google Scholar 

  11. Xiong J, Chen J, Zhang J (2007) Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts. Catal Commun 8(3):345–350

    Article  CAS  Google Scholar 

  12. Coq B, Tijani A, Dutartre R, Figueras F (1993) Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. J Mol Catal 79(1–3):253–264

    Article  CAS  Google Scholar 

  13. Han XX, Zhou RX, Lai GH, Zheng XM (2004) Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal Today 93–95:433–437

    Article  Google Scholar 

  14. Han XX, Zhou RX, Lai GH, Yue BH, Zheng XM (2004) Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts. J Mol Catal 209(1–2):83–87

    Article  CAS  Google Scholar 

  15. Tanielyan SK, More SR, Augustine RL, Schmidt St R (2017) Continuous liquid phase hydrogenation of 1,4-butynediol to high purity 1,4-butanediol over particulate Raney® nickel catalyst in a fixed bed reactor. Org Process Res Dev 21(3):327–335

    Article  CAS  Google Scholar 

  16. Li H, Wu Y, Zhang J, Dai W, Qiao M (2004) Liquid phase acetonitrile hydrogenation to ethylamine over highly active and selective Ni–Co–B amorphous alloy catalyst. Appl Catal A 275(1–2):199–206

    Article  CAS  Google Scholar 

  17. Liu S, Hao F, Liu P, Luo H, Liao H (2015) Liquid phase hydrogenation of adiponitrile over amorphous alloy nickel catalyst. Res Chem Intermed 41(8):5879–5887

    Article  CAS  Google Scholar 

  18. Pedersen SE, Frye JG Jr, Attig TG, Budge JR (1997) Catalysts for the hydrogenation of aqueous solutions of maleic acid and its derivatives in to 1,4-butanediol. USA Patent 5698749

  19. Attig TG, Graham AM (1989) Preparation of γ-butyrolactone and 1,4-butanediol by catalytic hydrogenation of maleic acid. USA Patent 4827001

  20. Ruiz P, Crine M, Germain A, L’Homme G (1984) Influence of the reaction system on the flow rate in trickle bed reactors. ACS Symp Ser 237 (Chem React Catal Model) 15–36

  21. Vertes G, Horanyi G, Kiss G (1974) Effect of a small amount of noble metal additive on the behavior of active and inactive supports in catalytic hydrogenation. Acta Chim Acad Sci Hung 83:135–149

    CAS  Google Scholar 

  22. Brown CA, Brown HC (1963) The reaction of sodium borohydride with nickel acetate in aqueous solution – a convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tedency. J Am Chem Soc 85(7):1003–1005

    Article  CAS  Google Scholar 

  23. Kumar A, Wolf EE, Mukasyan AS (2011) Solution combustion synthesis of metal nanopowders: nickel – reaction pathways. AIChE J 57(8):2207–2214

    Article  CAS  Google Scholar 

  24. Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116(23):14493–14586

    Article  CAS  Google Scholar 

  25. Gonzalez-Cortes SL, Imbert FE (2013) Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl Catal A 452:117–131

    Article  CAS  Google Scholar 

  26. Lan A, Mukasyan AS (2008) Complex SrRuO3–Pt and LaRuO3–Pt catalysts for direct alcohol fuel cells. Ind Eng Chem Res 47(23):8989–8994

    Article  CAS  Google Scholar 

  27. Zuo C, Liu MF, Liu MLIn (2012) In: Aparicio M, Jitianu A, Klein LC (eds) Sol–gel processing for conventional and alternative energy. Springer, New York, pp 7–36

    Chapter  Google Scholar 

  28. Nagaveni K, Sivalingam G, Hedge MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B: Environ 48(2):83–93

    Article  CAS  Google Scholar 

  29. Sivalingam G, Nagaveni K, Hedge MS, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B: Environ 45(1):23–38

    Article  CAS  Google Scholar 

  30. Liang H, Ting YY, Sun H, Ang HM, Tade MO, Wang S (2012) Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. J Colloid Interface Sci 372(1):58–62

    Article  CAS  Google Scholar 

  31. Nagappa B, Chandrappa GT (2007) Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous Mesoporous Mater 106(1–3):212–218

    Article  CAS  Google Scholar 

  32. Yadav GD, Ajgaonkar NP, Varma A (2012) Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. J Catal 292:99–110

    Article  CAS  Google Scholar 

  33. Ragupathi C, Vijaya JJ, Kennedy LJ (2017) Preparation, characterization and catalytic properties of nickel aluminate nanoparticles. J Saudi Chem Soc 21:S231–S239

    Article  CAS  Google Scholar 

  34. Deraz NM (2013) Synthesis and characterization of nano-sized nickel aluminate spinel crystals. Int J Electrochem Sci 8:5203–5212

    CAS  Google Scholar 

  35. Chen X, Ma Y, Wang L, Yang Z, Jin S, Zhang L et al (2015) Nickel–aluminium intermetallic compounds as highly selective and stable catalysts for the hydrogenation of naphthalene to tetralin. ChemCatChem 7(6):978–983

    Article  CAS  Google Scholar 

  36. Cross A, Roslyakov S, Manukyan KV, Rouvimov S, Rogachev AS, Kovalev D et al (2014) In situ preparation of highly Stable Ni-based supported catalysts by solution combustion synthesis. J Phys Chem C 118(45):26191–26198

    Article  CAS  Google Scholar 

  37. Kumar A, Mukasyan AS, Wolf EE (2011) Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl Catal A 401(1–2):20–28

    Article  CAS  Google Scholar 

  38. Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225(2):439–452

    Article  CAS  Google Scholar 

  39. de Lima SM, da Silva AM, da Costa LO, Assaf JM, Mattos LV, Sarkari R et al (2012) Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl Catal B 121–122:1–9

    Article  Google Scholar 

  40. Wang T, Ren DG, Huo Z, Song Z, Jin F, Chen M et al (2017) A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chem 19(3):716–721

    Article  CAS  Google Scholar 

  41. Gao Y, Meng F, Cheng Y, Li Z (2017) Influence of fuel additives in the urea-nitrates solution combustion synthesis of Ni-Al2O3 catalyst for slurry phase CO methanation. Appl Catal A 534:12–21

    Article  CAS  Google Scholar 

  42. Qi J, Sun X, Tang S, Sun Y, Xu C, Li X et al (2017) Integrated study on the role of solvent, catalyst and reactant in the hydrodeoxygenation of eugenol over nickel-based catalysts. Appl Catal A 535:24–31

    Article  CAS  Google Scholar 

  43. Borchtchoukova N, Feldman V, Finkelshtain G, Rakovsky SK, Gabrovska MV, Nikolova DA et al (2017) Nickel-based catalyst for fuel cell. USA Patent 20170263942

  44. Liang S, Qian Y, Lv L, Sun L, Zheng Y, Wang T et al (2017) Selective nickel based hydrogenation catalysts and the preparation thereof. USA Patent 9597668 B2

  45. Sokol’skii DV (1964) Hydrogenation in solution. Israel Program for Scientific Translations, UK

  46. El-Shereafy E, Abousekkina MM, Mashaly A, El-Ashry M (1998) Mechanism of thermal decomposition and γ-pyrolysis of aluminum nitrate nonahydrate [Al(NO3)3·9H2O]. J Radioanal Nucl Chem 237(1–2):183–186

    Article  CAS  Google Scholar 

  47. Zhuravlev VD, Vasil’ev V G, Vladimirova EV, Shevchenko VG, Grigorov IG, Bamburov VG et al (2010) Glycine–nitrate combustion synthesis of finely dispersed alumina. Glass Phys Chem 36(4):506–512

    Article  CAS  Google Scholar 

  48. Heinrich P (1961) Course of inorganic chemistry, vol 2. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  49. Khanna R, Ikram-Ul-Haq M, Sadi SF, Sahajwalla V, Mukherjee PS, Seetharaman S (2014) Reduction reactions in Al2O3-C-Fe and Al2O3–Fe2O3–C systems at 1823 K. ISIJ Int 54(7):1485–1490

    Article  CAS  Google Scholar 

  50. Xanthopoulou G, Thoda O, Metaxa ED, Vekinis G, Chroneos A (2017) Influence of atomic structure on the nano- nickel-based catalysts activity produced by solution combustion synthesis in the hydrogenation of maleic acid. J Catal 348:9–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Thoda.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest for any contributing authors in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thoda, O., Xanthopoulou, G., Vekinis, G. et al. Parametric Optimisation of Solution Combustion Synthesis Catalysts and Their Application for the Aqueous Hydrogenation of Maleic Acid. Catal Lett 148, 764–778 (2018). https://doi.org/10.1007/s10562-017-2279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2279-y

Keywords

Navigation