Catalysis Letters

, Volume 148, Issue 2, pp 764–778 | Cite as

Parametric Optimisation of Solution Combustion Synthesis Catalysts and Their Application for the Aqueous Hydrogenation of Maleic Acid

  • O. Thoda
  • G. Xanthopoulou
  • G. Vekinis
  • A. Chroneos


Ni-based nano-catalysts were synthesized by solution combustion synthesis. Nickel aluminate spinels and Ni–Al alloys yielded during combustion, although it is difficult to be produced at low temperatures. A multistage mechanism of the Ni–NiAl catalysts formation was identified which indicates that SCS is general and can be utilized for the preparation of many different types of metal–alloys nanostructures.

Graphical Abstract


Heterogeneous catalysis Adsorption BET EDX Electron microscopy XRD Nanostructure Hydrogenation Solution combustion synthesis Nickel catalysts 


Compliance with Ethical Standards

Conflict of interest

We declare that there is no conflict of interest for any contributing authors in this work.


  1. 1.
    Singh UK, Vannice MA (2001) Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts – a review. Appl Catal A 213(1):1–24CrossRefGoogle Scholar
  2. 2.
    Landau RN, Singh UK, Gortsema F, Sun Y, Gomolka SC, Lam T et al (1995) A reaction calorimetric investigation of the hydrogenation of a substituted pyrazine. J Catal 157(1):201–208CrossRefGoogle Scholar
  3. 3.
    Blaser HU, Jalett HP, Spindler F (1996) Enantioselective hydrogenation of α-keroesters: comparison of homogeneous and heterogeneous catalysts. J Mol Catal A 107(1–3):85–94CrossRefGoogle Scholar
  4. 4.
    Gallezot P, Richard D (1998) Selective hydrogenation of α, β-unsaturated aldehydes. Cat Rev - Sci Eng 40(1–2):81–126CrossRefGoogle Scholar
  5. 5.
    Pintar A, Batista J, Levec J, Kajiuchi T (1996) Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Appl Catal B 11(1):81–98CrossRefGoogle Scholar
  6. 6.
    Vaidya PD, Mahajani VV (2003) Kinetics of aqueous phase hydrogenation of maleic acid to succinic acid over an Ru/Al2O3 catalyst. J Chem Technol Biotechnol 78(5):504–511CrossRefGoogle Scholar
  7. 7.
    Zeikus JG, Jain MK, Elanhovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51(5):545–552CrossRefGoogle Scholar
  8. 8.
    Harmon RE, Gupta SK, Brown DJ (1973) Hydrogenation of organic compounds using homogeneous catalysts. Chem Rev 73(1):21–52CrossRefGoogle Scholar
  9. 9.
    Yang XL, Liu HF (1997) Influence of metal ions on hydrogenation of o-chloronitrobenzene over platinum colloidal clusters. Appl Catal A 164(1–2):97–203Google Scholar
  10. 10.
    Han XX, Zhou RX, Zheng XM, Jiang H (2003) Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts. J Mol Catal A 193(1–2):103–108CrossRefGoogle Scholar
  11. 11.
    Xiong J, Chen J, Zhang J (2007) Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts. Catal Commun 8(3):345–350CrossRefGoogle Scholar
  12. 12.
    Coq B, Tijani A, Dutartre R, Figueras F (1993) Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. J Mol Catal 79(1–3):253–264CrossRefGoogle Scholar
  13. 13.
    Han XX, Zhou RX, Lai GH, Zheng XM (2004) Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts. Catal Today 93–95:433–437CrossRefGoogle Scholar
  14. 14.
    Han XX, Zhou RX, Lai GH, Yue BH, Zheng XM (2004) Effect of transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation properties of chloronitrobenzene over Pt/TiO2 catalysts. J Mol Catal 209(1–2):83–87CrossRefGoogle Scholar
  15. 15.
    Tanielyan SK, More SR, Augustine RL, Schmidt St R (2017) Continuous liquid phase hydrogenation of 1,4-butynediol to high purity 1,4-butanediol over particulate Raney® nickel catalyst in a fixed bed reactor. Org Process Res Dev 21(3):327–335CrossRefGoogle Scholar
  16. 16.
    Li H, Wu Y, Zhang J, Dai W, Qiao M (2004) Liquid phase acetonitrile hydrogenation to ethylamine over highly active and selective Ni–Co–B amorphous alloy catalyst. Appl Catal A 275(1–2):199–206CrossRefGoogle Scholar
  17. 17.
    Liu S, Hao F, Liu P, Luo H, Liao H (2015) Liquid phase hydrogenation of adiponitrile over amorphous alloy nickel catalyst. Res Chem Intermed 41(8):5879–5887CrossRefGoogle Scholar
  18. 18.
    Pedersen SE, Frye JG Jr, Attig TG, Budge JR (1997) Catalysts for the hydrogenation of aqueous solutions of maleic acid and its derivatives in to 1,4-butanediol. USA Patent 5698749Google Scholar
  19. 19.
    Attig TG, Graham AM (1989) Preparation of γ-butyrolactone and 1,4-butanediol by catalytic hydrogenation of maleic acid. USA Patent 4827001Google Scholar
  20. 20.
    Ruiz P, Crine M, Germain A, L’Homme G (1984) Influence of the reaction system on the flow rate in trickle bed reactors. ACS Symp Ser 237 (Chem React Catal Model) 15–36Google Scholar
  21. 21.
    Vertes G, Horanyi G, Kiss G (1974) Effect of a small amount of noble metal additive on the behavior of active and inactive supports in catalytic hydrogenation. Acta Chim Acad Sci Hung 83:135–149Google Scholar
  22. 22.
    Brown CA, Brown HC (1963) The reaction of sodium borohydride with nickel acetate in aqueous solution – a convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tedency. J Am Chem Soc 85(7):1003–1005CrossRefGoogle Scholar
  23. 23.
    Kumar A, Wolf EE, Mukasyan AS (2011) Solution combustion synthesis of metal nanopowders: nickel – reaction pathways. AIChE J 57(8):2207–2214CrossRefGoogle Scholar
  24. 24.
    Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116(23):14493–14586CrossRefGoogle Scholar
  25. 25.
    Gonzalez-Cortes SL, Imbert FE (2013) Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS). Appl Catal A 452:117–131CrossRefGoogle Scholar
  26. 26.
    Lan A, Mukasyan AS (2008) Complex SrRuO3–Pt and LaRuO3–Pt catalysts for direct alcohol fuel cells. Ind Eng Chem Res 47(23):8989–8994CrossRefGoogle Scholar
  27. 27.
    Zuo C, Liu MF, Liu MLIn (2012) In: Aparicio M, Jitianu A, Klein LC (eds) Sol–gel processing for conventional and alternative energy. Springer, New York, pp 7–36CrossRefGoogle Scholar
  28. 28.
    Nagaveni K, Sivalingam G, Hedge MS, Madras G (2004) Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2. Appl Catal B: Environ 48(2):83–93CrossRefGoogle Scholar
  29. 29.
    Sivalingam G, Nagaveni K, Hedge MS, Madras G (2003) Photocatalytic degradation of various dyes by combustion synthesized nano anatase TiO2. Appl Catal B: Environ 45(1):23–38CrossRefGoogle Scholar
  30. 30.
    Liang H, Ting YY, Sun H, Ang HM, Tade MO, Wang S (2012) Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution. J Colloid Interface Sci 372(1):58–62CrossRefGoogle Scholar
  31. 31.
    Nagappa B, Chandrappa GT (2007) Mesoporous nanocrystalline magnesium oxide for environmental remediation. Microporous Mesoporous Mater 106(1–3):212–218CrossRefGoogle Scholar
  32. 32.
    Yadav GD, Ajgaonkar NP, Varma A (2012) Preparation of highly superacidic sulfated zirconia via combustion synthesis and its application in Pechmann condensation of resorcinol with ethyl acetoacetate. J Catal 292:99–110CrossRefGoogle Scholar
  33. 33.
    Ragupathi C, Vijaya JJ, Kennedy LJ (2017) Preparation, characterization and catalytic properties of nickel aluminate nanoparticles. J Saudi Chem Soc 21:S231–S239CrossRefGoogle Scholar
  34. 34.
    Deraz NM (2013) Synthesis and characterization of nano-sized nickel aluminate spinel crystals. Int J Electrochem Sci 8:5203–5212Google Scholar
  35. 35.
    Chen X, Ma Y, Wang L, Yang Z, Jin S, Zhang L et al (2015) Nickel–aluminium intermetallic compounds as highly selective and stable catalysts for the hydrogenation of naphthalene to tetralin. ChemCatChem 7(6):978–983CrossRefGoogle Scholar
  36. 36.
    Cross A, Roslyakov S, Manukyan KV, Rouvimov S, Rogachev AS, Kovalev D et al (2014) In situ preparation of highly Stable Ni-based supported catalysts by solution combustion synthesis. J Phys Chem C 118(45):26191–26198CrossRefGoogle Scholar
  37. 37.
    Kumar A, Mukasyan AS, Wolf EE (2011) Combustion synthesis of Ni, Fe and Cu multi-component catalysts for hydrogen production from ethanol reforming. Appl Catal A 401(1–2):20–28CrossRefGoogle Scholar
  38. 38.
    Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225(2):439–452CrossRefGoogle Scholar
  39. 39.
    de Lima SM, da Silva AM, da Costa LO, Assaf JM, Mattos LV, Sarkari R et al (2012) Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1−xCexNiO3 perovskite-type oxides. Appl Catal B 121–122:1–9CrossRefGoogle Scholar
  40. 40.
    Wang T, Ren DG, Huo Z, Song Z, Jin F, Chen M et al (2017) A nanoporous nickel catalyst for selective hydrogenation of carbonates into formic acid in water. Green Chem 19(3):716–721CrossRefGoogle Scholar
  41. 41.
    Gao Y, Meng F, Cheng Y, Li Z (2017) Influence of fuel additives in the urea-nitrates solution combustion synthesis of Ni-Al2O3 catalyst for slurry phase CO methanation. Appl Catal A 534:12–21CrossRefGoogle Scholar
  42. 42.
    Qi J, Sun X, Tang S, Sun Y, Xu C, Li X et al (2017) Integrated study on the role of solvent, catalyst and reactant in the hydrodeoxygenation of eugenol over nickel-based catalysts. Appl Catal A 535:24–31CrossRefGoogle Scholar
  43. 43.
    Borchtchoukova N, Feldman V, Finkelshtain G, Rakovsky SK, Gabrovska MV, Nikolova DA et al (2017) Nickel-based catalyst for fuel cell. USA Patent 20170263942Google Scholar
  44. 44.
    Liang S, Qian Y, Lv L, Sun L, Zheng Y, Wang T et al (2017) Selective nickel based hydrogenation catalysts and the preparation thereof. USA Patent 9597668 B2Google Scholar
  45. 45.
    Sokol’skii DV (1964) Hydrogenation in solution. Israel Program for Scientific Translations, UKGoogle Scholar
  46. 46.
    El-Shereafy E, Abousekkina MM, Mashaly A, El-Ashry M (1998) Mechanism of thermal decomposition and γ-pyrolysis of aluminum nitrate nonahydrate [Al(NO3)3·9H2O]. J Radioanal Nucl Chem 237(1–2):183–186CrossRefGoogle Scholar
  47. 47.
    Zhuravlev VD, Vasil’ev V G, Vladimirova EV, Shevchenko VG, Grigorov IG, Bamburov VG et al (2010) Glycine–nitrate combustion synthesis of finely dispersed alumina. Glass Phys Chem 36(4):506–512CrossRefGoogle Scholar
  48. 48.
    Heinrich P (1961) Course of inorganic chemistry, vol 2. Akademische Verlagsgesellschaft, LeipzigGoogle Scholar
  49. 49.
    Khanna R, Ikram-Ul-Haq M, Sadi SF, Sahajwalla V, Mukherjee PS, Seetharaman S (2014) Reduction reactions in Al2O3-C-Fe and Al2O3–Fe2O3–C systems at 1823 K. ISIJ Int 54(7):1485–1490CrossRefGoogle Scholar
  50. 50.
    Xanthopoulou G, Thoda O, Metaxa ED, Vekinis G, Chroneos A (2017) Influence of atomic structure on the nano- nickel-based catalysts activity produced by solution combustion synthesis in the hydrogenation of maleic acid. J Catal 348:9–21CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • O. Thoda
    • 1
    • 2
  • G. Xanthopoulou
    • 1
  • G. Vekinis
    • 1
  • A. Chroneos
    • 2
  1. 1.Institute of Nanoscience and NanotechnologyNCSR “Demokritos”Agia Paraskevi AttikisGreece
  2. 2.Faculty of Engineering, Environment and ComputingCoventry UniversityCoventryUK

Personalised recommendations