Catalysis Letters

, Volume 148, Issue 2, pp 539–546 | Cite as

Selective Catalytic Reduction of NO x over Au/Al2O3: Influence of the Gold Loading on the Promoting Effect of H2 in H2-Assisted C3H6-SCR of NO x

  • Tesnim Chaieb
  • Cyril Thomas
  • Sandra Casale
  • Catherine Louis
  • Laurent Delannoy
Article
  • 96 Downloads

Abstract

This article reports on the promotional effect of adding H2 to the reaction feed for the selective catalytic reduction of NO x with propene (H2–C3H6-SCR) over Au/Al2O3 catalysts. For this purpose, the influence of the Au loading in H2–C3H6-SCR was investigated. The H2 promoting effect in C3H6-SCR, well-established for Ag/Al2O3, was also demonstrated for Au/Al2O3. Although less pronounced than for Ag-based systems, the H2 effect allowed for a substantial increase in NO x conversion at temperatures higher than 250 °C on Au/Al2O3 samples. The highest NO x to N2 conversion in H2–C3H6-SCR was obtained for lowly-loaded gold samples (~ 1 wt% Au) with the smallest gold particle sizes. An increase in H2 concentration in the reaction feed also led to an increase in NO x conversion. The experiments performed in the present study as a function of the reaction temperature underlined the fact that concomitant activation of H2 and C3H6 is critical to achieve a high H2 promoting effect in H2–C3H6-SCR. Whereas this requirement is fulfilled for Ag/Al2O3, a temperature gap between the oxidation profiles of H2 and C3H6 remains for Au/Al2O3 due to the early oxidation of H2 on gold nanoparticles, which therefore limits the NO x conversion at low temperature.

Graphical Abstract

Keyword

Selective catalytic reduction NOx-TPD Gold catalysts H2 effect 

Notes

Acknowledgements

Dr. Tesnim Chaieb gratefully acknowledges UPMC for financial support (PhD Grant 322/2012).

References

  1. 1.
    Burch R, Breen JP, Hill CJ, Krutzsch B, Konrad B, Jobson E, Cider L, Eranen K, Klingstedt F, Lindfors LE (2004) Top Catal 30–1(1–4):19CrossRefGoogle Scholar
  2. 2.
    Nova I, Epling B, Peden C (2014) Catal Today 231:1CrossRefGoogle Scholar
  3. 3.
    Burch R (2004) Catal Rev 46(3–4):271CrossRefGoogle Scholar
  4. 4.
    Iwamoto M, Hamada H (1991) Catal Today 10(1):57CrossRefGoogle Scholar
  5. 5.
    Liu ZM, Woo SI (2006) Catal Rev 48(1):43CrossRefGoogle Scholar
  6. 6.
    Satokawa S (2000) Chem Lett 29(3):294CrossRefGoogle Scholar
  7. 7.
    Satokawa S, Shibata J, Shimizu K, Atsushi S, Hattori T (2003) Appl Catal B 42(2):179CrossRefGoogle Scholar
  8. 8.
    Chansai S, Burch R, Hardacre C, Breen J, Meunier F (2011) J Catal 281(1):98CrossRefGoogle Scholar
  9. 9.
    Kim PS, Kim MK, Cho BK, Nam IS, Oh SH (2013) J Catal 301:65CrossRefGoogle Scholar
  10. 10.
    Yu YB, He H, Zhang XL, Deng H (2014) Catal Sci Technol 4(5):1239CrossRefGoogle Scholar
  11. 11.
    Gu H, Chun KM, Song S (2015) Int J Hydrog Energy 40(30):9602CrossRefGoogle Scholar
  12. 12.
    Ueda A, Oshima T, Haruta M (1997) Appl Catal B 12:81CrossRefGoogle Scholar
  13. 13.
    Seker E, Gulari E (2002) Appl Catal A 232:203CrossRefGoogle Scholar
  14. 14.
    Miguel P, Granger P, Jagtap N, Umbarkar S, Dongare M, Dujardin C (2010) J Mol Catal A 322(1–2):90CrossRefGoogle Scholar
  15. 15.
    Pattrick G, van der Lingen E, Corti CW, Holliday RJ, Thompson DT (2004) Top Catal 30–1(1–4):273CrossRefGoogle Scholar
  16. 16.
    Chaieb T, Delannoy L, Casale S, Louis C, Thomas C (2015) Chem Commun 51(4):796CrossRefGoogle Scholar
  17. 17.
    Zanella R, Giorgio S, Henry CR, Louis C (2002) J Phys Chem B 106(31):7634CrossRefGoogle Scholar
  18. 18.
    Zanella R, Delannoy L, Louis C (2005) Appl Catal A 291:62CrossRefGoogle Scholar
  19. 19.
    Law HY, Blanchard J, Carrier X, Thomas C (2010) J Phys Chem C 114(21):9731CrossRefGoogle Scholar
  20. 20.
    Thomas C (2011) J Phys Chem C 115(5):2253CrossRefGoogle Scholar
  21. 21.
    Blanchard J, Doherty RP, Law HY, Methivier C, Thomas C (2013) Top Catal 56(1–8):134CrossRefGoogle Scholar
  22. 22.
    Chaieb T, Delannoy L, Louis C, Thomas C (2013) Appl Catal B 142:780CrossRefGoogle Scholar
  23. 23.
    Venkov T, Hadjiivanov K, Klissurski D (2002) Phys Chem Chem Phys 4(11):2443CrossRefGoogle Scholar
  24. 24.
    Szanyi J, Kwak JH, Chimentao RJ, Peden CHF (2007) J Phys Chem C 111(6):2661CrossRefGoogle Scholar
  25. 25.
    Paze C, Gubitosa G, Giacone SO, Spoto G, Xamena F, Zecchina A (2004) Top Catal 30–1(1–4):169CrossRefGoogle Scholar
  26. 26.
    Ji YY, Bai SL, Crocker M (2015) Appl Catal B 170:283CrossRefGoogle Scholar
  27. 27.
    Kotsifa A, Kondarides DI, Verykios XE (2007) Appl Catal B 72(1–2):136CrossRefGoogle Scholar
  28. 28.
    Bonnotte T, Doherty RP, Sayag C, Krafft JM, Methivier C, Sicard M, Ser F, Thomas C (2014) J Phys Chem C 118(14):7386CrossRefGoogle Scholar
  29. 29.
    Kim MY, Kyriakidou EA, Choi JS, Toops TJ, Binder AJ, Thomas C, Parks JE, Schwartz V, Chen JH, Hensley DK (2016) Appl Catal B 187:181CrossRefGoogle Scholar
  30. 30.
    Chaieb T, Delannoy L, Louis C, Thomas C (2016) Catal Lett 146(12):2622CrossRefGoogle Scholar
  31. 31.
    Breen JP, Burch R (2006) Top Catal 39(1–2):53CrossRefGoogle Scholar
  32. 32.
    Miyadera T (1993) Appl Catal B 2(2–3):199CrossRefGoogle Scholar
  33. 33.
    Shimizu K, Shibata J, Yoshida H, Satsuma A, Hattori T (2001) Appl Catal B 30(1–2):151CrossRefGoogle Scholar
  34. 34.
    Sadokhina NA, Prokhorova AF, Kvon RI, Mashkovskii IS, Bragina GO, Baeva GN, Bukhtiyarov VI, Stakheev AY (2012) Kinet Catal 53(1):107CrossRefGoogle Scholar
  35. 35.
    Chaieb T, Delannoy L, Costentin G, Louis C, Casale S, Chantry RL, Li ZY, Thomas C (2014) Appl Catal B 156:192CrossRefGoogle Scholar
  36. 36.
    Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232CrossRefGoogle Scholar
  37. 37.
    Tsunoyama H, Ichikuni N, Sakurai H, Tsukuda T (2009) J Am Chem Soc 131(20):7086CrossRefGoogle Scholar
  38. 38.
    Corma A, Concepcion P, Boronat M, Sabater MJ, Navas J, Yacaman MJ, Larios E, Posadas A, Lopez-Quintela MA, Buceta D, Mendoza E, Guilera G, Mayoral A (2013) Nat Chem 5(9):775CrossRefGoogle Scholar
  39. 39.
    El Kolli N, Delannoy L, Louis C (2013) J Catal 297:79CrossRefGoogle Scholar
  40. 40.
    Houel V, Millington P, Rajaram R, Tsolakis A (2007) Appl Catal B 77(1–2):29CrossRefGoogle Scholar
  41. 41.
    West B (2006) Society of Automotive Engineers, Special Publications SP-2022:67Google Scholar
  42. 42.
    Bentrup U, Richter M, Fricke R (2005) Appl Catal B 55(3):213CrossRefGoogle Scholar
  43. 43.
    Burch R, Breen JP, Meunier FC (2002) Appl Catal B 39(4):283CrossRefGoogle Scholar
  44. 44.
    Sazama P, Capek L, Drobna H, Sobalik Z, Dedecek J, Arve K, Wichterlova B (2005) J Catal 232(2):302CrossRefGoogle Scholar
  45. 45.
    Zhang XL, Yu YB, He H (2007) Appl Catal B 76(3–4):241CrossRefGoogle Scholar
  46. 46.
    Brosius R, Arve K, Groothaert MH, Martens JA (2005) J Catal 231(2):344CrossRefGoogle Scholar
  47. 47.
    Tamm S (2013) Catal Lett 143(9):957CrossRefGoogle Scholar
  48. 48.
    Thomas C (2015) Appl Catal B 162:454CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Tesnim Chaieb
    • 1
  • Cyril Thomas
    • 1
  • Sandra Casale
    • 1
  • Catherine Louis
    • 1
  • Laurent Delannoy
    • 1
  1. 1.Laboratoire de Réactivité de Surface, UMR CNRS 7197, UPMC Univ Paris 06Sorbonne UniversitésParisFrance

Personalised recommendations