Catalysis Letters

, Volume 148, Issue 2, pp 757–763 | Cite as

Enzyme-Catalyzed Cascade Michael/Cyclization Reaction for the Synthesis of 3,4-Dihydropyran Derivatives by Using a Protease

  • Xuan Ding
  • Xue-Dong Zhang
  • Chun-Lin Dong
  • Zhi GuanEmail author
  • Yan-Hong HeEmail author


Protease from Streptomyces griseus (SGP) as a sustainable biocatalyst was successfully applied in the Michael/cyclization reaction between dimedone and aryl or alkyl substituted α,β-unsaturated ketones or ester for the synthesis of 3,4-dihydropyran derivatives. The products were obtained in moderate to excellent yields (46–95%) with certain enantioselectivities (up to 18% ee) for 27 examples. This process afforded a potential biocatalytic approach as alternative to chemical synthesis for 3,4-dihydropyran derivatives.

Graphical Abstract

Protease from Streptomyces griseus (SGP) was used as a catalyst in the Michael addition/cyclization reaction for the synthesis of 3,4-dihydropyran derivatives


Enzyme catalysis Protease Enzymatic promiscuity Michael/cyclization reaction 3,4-Dihydropyran derivatives 



This work was financially supported by the National Natural Science Foundation of China (Nos. 21472152 and 21672174), and the Basic and Frontier Research Project of Chongqing (cstc2015jcyjBX0106).

Supplementary material

10562_2017_2275_MOESM1_ESM.doc (7.3 mb)
Supplementary material 1 (DOC 6743 KB)


  1. 1.
    Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S (2016) Chem Rev 116:2307–2413CrossRefGoogle Scholar
  2. 2.
    Sukumaran J, Hanefeld U (2005) Chem Soc Rev 34:530–542CrossRefGoogle Scholar
  3. 3.
    Khersonsky O, Roodveldt C, Tawfik DS (2006) Curr Opin Chem Biol 10:498–508CrossRefGoogle Scholar
  4. 4.
    Nobeli I, Favia AD, Thornton JM (2009) Nat Biotech 27:157–167CrossRefGoogle Scholar
  5. 5.
    Copley SD (2003) Curr Opin Chem Biol 7:265–272CrossRefGoogle Scholar
  6. 6.
    Hult K, Berglund P (2007) Trends Biotechnol 25:231–238CrossRefGoogle Scholar
  7. 7.
    Busto E, Gotor-Fernandez V, Gotor V (2010) Chem Soc Rev 39:4504–4523CrossRefGoogle Scholar
  8. 8.
    López-Iglesias M, Gotor-Fernández V (2015) Chem Rec 15(4):743–759CrossRefGoogle Scholar
  9. 9.
    Li C, Feng X-W, Wang N, Zhou Y-J, Yu X-Q (2008) Green Chem 10(6):616–618CrossRefGoogle Scholar
  10. 10.
    Li K, He T, Li C, Feng X-W, Wang N, Yu X-Q (2009) Green Chem 11(6):777–779CrossRefGoogle Scholar
  11. 11.
    Svedendahl M, Hult K, Berglund P (2005) J Am Chem Soc 127:17988–17989CrossRefGoogle Scholar
  12. 12.
    Guan Z, Li L-Y, He Y-H (2015) RSC Adv 5:16801–16814CrossRefGoogle Scholar
  13. 13.
    He Y-H, Hu W, Guan Z (2012) J Org Chem 77(1):200–207CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Li R, He Y-H, Guan Z (2017) Catal Lett 147(3):633–639CrossRefGoogle Scholar
  15. 15.
    Asakawa Y, Matsuda R, Schofield WB, Gradstein SR (1982) Phytochemistry 21:2471–2473CrossRefGoogle Scholar
  16. 16.
    Matsuo A, Yuki S, Nakayama M, Hayashi S (1982) Chem Lett 11:463–466CrossRefGoogle Scholar
  17. 17.
    Halland N, Hansen T, Jørgensen KA (2003) Angew Chem Int Edit 42:4955–4957CrossRefGoogle Scholar
  18. 18.
    Halland N, Velgaard T, Jørgensen KA (2003) J Org Chem 68:5067–5074CrossRefGoogle Scholar
  19. 19.
    Kim H, Yen C, Preston P, Chin J (2006) Org Lett 8:5239–5242CrossRefGoogle Scholar
  20. 20.
    Xie J-W, Yue L, Chen W, Du W, Zhu J, Deng J-G, Chen Y-C (2007) Org Lett 9:413–415CrossRefGoogle Scholar
  21. 21.
    Calter MA, Wang J (2009) Org Lett 11:2205–2208CrossRefGoogle Scholar
  22. 22.
    Liu Y, Liu X, Wang M, He P, Lin L, Feng X (2012) J Org Chem 77:4136–4142CrossRefGoogle Scholar
  23. 23.
    Shi T, Guo Z, Yu H, Xie J, Zhong Y, Zhu W (2013) Adv Synth Catal 355:2538–2543CrossRefGoogle Scholar
  24. 24.
    Niu Z, He X, Shang Y (2014) Tetrahedron: Asymmetry 25:796–801CrossRefGoogle Scholar
  25. 25.
    Albanese DCM, Gaggero N (2014) Eur J Org Chem 5631–5640Google Scholar
  26. 26.
    Ray SK, Rout S, Singh VK (2013) Org Biomol Chem 11:2412–2416CrossRefGoogle Scholar
  27. 27.
    Wang J, Yu F, Zhang X, Ma D (2008) Org Lett 10:2561–2564CrossRefGoogle Scholar
  28. 28.
    Schmidt EY, Trofimov BA, Zorina NV, Mikhaleva AI, Ushakov IA, Skital’tseva EV, Kazheva ON, Alexandrov GG, Dyachenko OA (2010) Eur J Org Chem 6727–6730Google Scholar
  29. 29.
    Yu C, Zheng F, Ye H, Zhong W (2009) Tetrahedron 65:10016–10021CrossRefGoogle Scholar
  30. 30.
    Yao W, Pan L, Wu Y, Ma C (2010) Org Lett, 12:2422–2425CrossRefGoogle Scholar
  31. 31.
    Chen J-H, Chang C, Chang H-J, Chen K (2011) Org Biomol Chem 9:7510–7516CrossRefGoogle Scholar
  32. 32.
    Hong L, Wang L, Sun W, Wong K, Wang R (2009) J Org Chem 74:6881–6884CrossRefGoogle Scholar
  33. 33.
    Lv L, Xi H, Bai X, Li Z (2015) Org Lett 17:4324–4327CrossRefGoogle Scholar
  34. 34.
    Liu Z-Q, Liu B-K, Wu Q, Lin X-F (2011) Tetrahedron 67:9736–9740CrossRefGoogle Scholar
  35. 35.
    Zhou L-H, Wang N, Zhang W, Xie Z-B, Yu X-Q (2013) J Mol Catal B-Enzym 91:37–43CrossRefGoogle Scholar
  36. 36.
    Li L-Y, Zeng Q-Q, Yang Y-X, Hu H-F, Xu M, Guan Z, He Y-H (2015) J Mol Catal B-Enzym 112:1–7CrossRefGoogle Scholar
  37. 37.
    Jiang L, Wang B, Li R-R, Shen S, Yu H-W, Ye L-D (2014) Process Biochem 49:1135–1138CrossRefGoogle Scholar
  38. 38.
    Yang Q, Zhou L-H, Wu W-X, Zhang W, Wang N, Yu X-Q (2015) RSC Adv 5:78927–78932CrossRefGoogle Scholar
  39. 39.
    Dordick JS (1989) Enzyme Microb Tech 11:194–211CrossRefGoogle Scholar
  40. 40.
    Church FC, Catignani GL, Swaisgood HE (1982) Enzyme Microb Tech 4:313–316CrossRefGoogle Scholar
  41. 41.
    Gold AM (1965) Biochemistry 4:897–901CrossRefGoogle Scholar
  42. 42.
    Morrill GA, Kostellow AB, Moore RD, Gupta RK (2013) BMC Dev Biol 13:3CrossRefGoogle Scholar
  43. 43.
    Thomas T, Scopes R (1998) Biochem J 330:1087–1095CrossRefGoogle Scholar
  44. 44.
    Song X-X, Liu J, Liu M-M, Wang X, Zhang Z-F, Wang M-C, Chang J-B (2014) Tetrahedron 70:5468–5474CrossRefGoogle Scholar
  45. 45.
    Gładkowski W, Skrobiszewski A, Mazur M, Siepka M, Pawlak A, Obmińska-Mrukowicz B, Białońska A, Poradowski D, Drynda A, Urbaniak M (2013) Tetrahedron 69:10414–10423CrossRefGoogle Scholar
  46. 46.
    Ji Y, Sweeney J, Zoglio J, Gorin DJ (2013) J Org Chem 78:11606–11611CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations