Advertisement

Catalysis Letters

, Volume 148, Issue 2, pp 531–538 | Cite as

A Cyanide-Based Coordination Polymer for Hydrogen Evolution Electrocatalysis

  • Elif Pınar Alsaç
  • Emine Ulker
  • Satya Vijaya Kumar Nune
  • Ferdi Karadas
Article
  • 276 Downloads

Abstract

Research on H2 production has recently been directed to the development of cost-efficient and robust heterogeneous catalysts for hydrogen evolution reaction (HER). Given the promising catalytic activities of several cobalt-based systems and the robustness of Prussian blue analogues in harsh catalytic processes including water oxidation, a Co–Co Prussian blue analogue was investigated as a HER catalyst for the first time. Co–Co Prussian Blue modified fluorine doped tin oxide (FTO) electrode demonstrated a significant HER activity with an onset overpotential of 257 mV, a Tafel slope of 80 mV dec−1, and a turnover frequency of 0.090 s−1 at an overpotential of 250 mV. Comparative XPS, Infrared, and XRD studies performed on pristine and post-catalytic electrodes confirm the stability of the catalyst.

Graphical Abstract

Keywords

Prussian blue Cyanide Water reduction Hydrogen evolution Electrocatalysis 

Notes

Acknowledgements

This work was suppoerted by the Grants from The Science and Technology Council of Turkey, TUBITAK (Project No: 215Z249). E. U. thanks TUBITAK for support (Project No: 1929B011500059).

Supplementary material

10562_2017_2271_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1122 KB)

References

  1. 1.
    Goldemberg J (1995) Energy needs in developing countries and sustainability. Science 269:1058–1059.  https://doi.org/10.1126/science.269.5227.1058 CrossRefGoogle Scholar
  2. 2.
    Hoel M, Kverndokk S (1996) Depletion of fossil fuels and the impacts of global warming. Resour Energy Econ 18:115–136.  https://doi.org/10.1016/0928-7655(96)00005-X CrossRefGoogle Scholar
  3. 3.
    Höök M, Tang X (2013) Depletion of fossil fuels and anthropogenic climate change: a review. Energy Policy 52:797–809.  https://doi.org/10.1016/j.enpol.2012.10.046 CrossRefGoogle Scholar
  4. 4.
    Schlapbach L, Züttel A (2001) Hydrogen-storage materials for mobile applications. Nature 414:353–358.  https://doi.org/10.1038/35104634 CrossRefGoogle Scholar
  5. 5.
    Durbin DJ, Malardier-Jugroot C (2013) Review of hydrogen storage techniques for on board vehicle applications. Int J Hydrog Energy 38:14595–14617.  https://doi.org/10.1016/j.ijhydene.2013.07.058 CrossRefGoogle Scholar
  6. 6.
    Paggiaro R, Bénard P, Polifke W (2010) Cryo-adsorptive hydrogen storage on activated carbon I: thermodynamic analysis of adsorption vessels and comparison with liquid and compressed gas hydrogen storage. Int J Hydrog Energy 35:638–647.  https://doi.org/10.1016/j.ijhydene.2009.10.108 CrossRefGoogle Scholar
  7. 7.
    Weinberger B, Lamari FD (2009) High pressure cryo-storage of hydrogen by adsorption at 77K and up to 50 MPa. Int J Hydrog Energy 34:3058–3064.  https://doi.org/10.1016/j.ijhydene.2009.01.093 CrossRefGoogle Scholar
  8. 8.
    Ahluwalia RK, Hua TQ, Peng J-K, Lasher S, McKenney K, Sinha J et al (2010) Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications. Int J Hydrog Energy 35:4171–4184.  https://doi.org/10.1016/j.ijhydene.2010.02.074 CrossRefGoogle Scholar
  9. 9.
    Wang L, Zheng C, Li R, Chen B, Wei Z (2014) Numerical analysis of temperature rise within 70 MPa composite hydrogen vehicle cylinder during fast refueling. J Cent South Univ 21:2772–2778.  https://doi.org/10.1007/s11771-014-2240-9 CrossRefGoogle Scholar
  10. 10.
    Khan MTI, Monde M, Setoguchi T (2009) Hydrogen gas filling into an actual tank at high pressure and optimization of its thermal characteristics. J Therm Sci 18:235–240.  https://doi.org/10.1007/s11630-009-0235-x CrossRefGoogle Scholar
  11. 11.
    Koper MTM, Bouwman E (2010) Electrochemical hydrogen production: bridging homogeneous and heterogeneous catalysis. Angew Chem Int Ed 49:3723–3725.  https://doi.org/10.1002/anie.201000629 CrossRefGoogle Scholar
  12. 12.
    Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063.  https://doi.org/10.1039/tf9585401053 CrossRefGoogle Scholar
  13. 13.
    Burke LD, Naser NS, Ahern BM (2007) Use of iridium oxide films as hydrogen gas evolution cathodes in aqueous media. J Solid State Electrochem 11:655–666.  https://doi.org/10.1007/s10008-006-0221-0 CrossRefGoogle Scholar
  14. 14.
    Durst J, Simon C, Hasche F, Gasteiger HA (2014) Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt, Ir, Rh, and Pd electrocatalysts in acidic media. J Electrochem Soc 162:F190–F203.  https://doi.org/10.1149/2.0981501jes CrossRefGoogle Scholar
  15. 15.
    Sheng W, Gasteiger HA, Shao-Horn Y (2010) Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. J Electrochem Soc 157:B1529–B1536.  https://doi.org/10.1149/1.3483106 CrossRefGoogle Scholar
  16. 16.
    Rioual S, Lescop B, Quentel F, Gloaguen F (2015) A molecular material based on electropolymerized cobalt macrocycles for electrocatalytic hydrogen evolution. Phys Chem Chem Phys 17:13374–13379.  https://doi.org/10.1039/C5CP01210D CrossRefGoogle Scholar
  17. 17.
    Gloaguen F, Rauchfuss TB (2009) Small molecule mimics of hydrogenases: hydrides and redox. Chem Soc Rev 38:100–108.  https://doi.org/10.1039/B801796B CrossRefGoogle Scholar
  18. 18.
    Wang M, Chen L, Sun L (2012) Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts. Energy Environ Sci 5:6763–6778.  https://doi.org/10.1039/c2ee03309g CrossRefGoogle Scholar
  19. 19.
    Thoi VS, Sun Y, Long JR, Chang CJ (2013) Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. Chem Soc Rev 42:2388–2400.  https://doi.org/10.1039/C2CS35272A CrossRefGoogle Scholar
  20. 20.
    Losse S, Vos JG, Rau S (2010) Catalytic hydrogen production at cobalt centres. Coord Chem Rev 254:2492–2504.  https://doi.org/10.1016/j.ccr.2010.06.004 CrossRefGoogle Scholar
  21. 21.
    Artero V, Chavarot-Kerlidou M, Fontecave M (2011) Splitting water with cobalt. Angew Chem Int Ed 50:7238–7266.  https://doi.org/10.1002/anie.201007987 CrossRefGoogle Scholar
  22. 22.
    Wiedner ES, Bullock RM (2016) Electrochemical detection of transient cobalt hydride intermediates of electrocatalytic hydrogen production. J Am Chem Soc 138:8309–8318.  https://doi.org/10.1021/jacs.6b04779 CrossRefGoogle Scholar
  23. 23.
    Lo WKC, Castillo CE, Gueret R, Fortage J, Rebarz M, Sliwa M et al (2016) Synthesis, characterization, and photocatalytic H2-evolving activity of a family of [Co(N4Py)(X)]n+ complexes in aqueous solution. Inorg Chem 55:4564–4581.  https://doi.org/10.1021/acs.inorgchem.6b00391 CrossRefGoogle Scholar
  24. 24.
    Kandemir B, Kubie L, Guo Y, Sheldon B, Bren KL (2016) Hydrogen evolution from water under aerobic conditions catalyzed by a cobalt ATCUN metallopeptide. Inorg Chem 55:1355–1357.  https://doi.org/10.1021/acs.inorgchem.5b02157 CrossRefGoogle Scholar
  25. 25.
    Sun Y, Bigi JP, Piro NA, Tang ML, Long JR, Chang CJ (2011) Molecular cobalt pentapyridine catalysts for generating hydrogen from water. J Am Chem Soc 133:9212–9215.  https://doi.org/10.1021/ja202743r CrossRefGoogle Scholar
  26. 26.
    Cobo S, Heidkamp J, Jacques P-A, Fize J, Fourmond V, Guetaz L et al (2012) A janus cobalt-based catalytic material for electro-splitting of water. Nat Mater 11:802–807.  https://doi.org/10.1038/nmat3385 CrossRefGoogle Scholar
  27. 27.
    Sun Y, Liu C, Grauer DC, Yano J, Long JR, Yang P et al (2013) Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. J Am Chem Soc 135:17699–17702.  https://doi.org/10.1021/ja4094764 CrossRefGoogle Scholar
  28. 28.
    Khnayzer RS, Thoi VS, Nippe M, King AE, Jurss JW, El Roz KA et al (2014) Towards a comprehensive understanding of visible-light photogeneration of hydrogen from water using cobalt(ii) polypyridyl catalysts. Energy Environ Sci 7:1477–1488.  https://doi.org/10.1039/c3ee43982h CrossRefGoogle Scholar
  29. 29.
    Kaye SS, Long JR (2005) Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). J Am Chem Soc 127:6506–6507.  https://doi.org/10.1021/ja051168t CrossRefGoogle Scholar
  30. 30.
    Hartman MR, Peterson VK, Liu Y, Kaye SS, Long JR (2006) Neutron diffraction and neutron vibrational spectroscopy studies of hydrogen adsorption in the prussian blue analogue Cu3[Co(CN)6]2. Chem Mater 18:3221–3224.  https://doi.org/10.1021/cm0608600 CrossRefGoogle Scholar
  31. 31.
    Tian J, Liu Q, Asiri AM, Sun X (2014) Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc 136:7587–7590.  https://doi.org/10.1021/ja503372r CrossRefGoogle Scholar
  32. 32.
    Yamada Y, Oyama K, Gates R, Fukuzumi S (2015) High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation. Angew Chem 127:5705–5709.  https://doi.org/10.1002/ange.201501116 CrossRefGoogle Scholar
  33. 33.
    Abe T, Taguchi F, Tokita S, Kaneko M (1997) Prussian White as a highly active molecular catalyst for proton reduction. J Mol Catal A Chem 126:L89–L92.  https://doi.org/10.1016/S1381-1169(97)00156-8 CrossRefGoogle Scholar
  34. 34.
    Pintado S, Goberna-Ferrón S, Escudero-Adán EC, Galán-Mascarós JR (2013) Fast and persistent electrocatalytic water oxidation by Co–Fe prussian blue coordination polymers. J Am Chem Soc 135:13270–13273.  https://doi.org/10.1021/ja406242y CrossRefGoogle Scholar
  35. 35.
    Roque J, Reguera E, Balmaseda J, Rodríguez-Hernández J, Reguera L, del Castillo LF (2007) Porous hexacyanocobaltates(III): role of the metal on the framework properties. Micropor Mesopor Mat 103(1–3):57–71CrossRefGoogle Scholar
  36. 36.
    Goberna-Ferrón S, Hernández WY, Rodríguez-García B, Galán-Mascarós JR (2014) Light-driven water oxidation with metal hexacyanometallate heterogeneous catalysts. ACS Catal 4:1637–1641.  https://doi.org/10.1021/cs500298e CrossRefGoogle Scholar
  37. 37.
    Jin Z, Li P, Huang X, Zeng G, Jin Y, Zhenga B, Xiao D (2014) Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution. J Mater Chem A 2:18593–18599.  https://doi.org/10.1039/c4ta04434g CrossRefGoogle Scholar
  38. 38.
    Gupta S, Patel N, Fernandes R, Kadrekar R, Dashora A, Yadav AK et al (2016) Co–Ni–B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl Catal B 192:126–133.  https://doi.org/10.1016/j.apcatb.2016.03.032 CrossRefGoogle Scholar
  39. 39.
    Tian J, Liu Q, Liang Y, Xing Z, Asiri AM, Sun X (2014) FeP nanoparticles film grown on carbon cloth: an ultrahighly active 3D hydrogen evolution cathode in both acidic and neutral solutions. ACS Appl Mater Interfaces 6:20579–20584.  https://doi.org/10.1021/am5064684 CrossRefGoogle Scholar
  40. 40.
    Peng Z, Jia D, Al-Enizi AM, Elzatahry AA, Zheng G (2015) Electrocatalysts: from water oxidation to reduction: homologous Ni–Co based nanowires as complementary water splitting electrocatalysts (Adv. Energy Mater. 9/2015). Adv Energy Mater 5:1402031–1402037.  https://doi.org/10.1002/aenm.201570050 CrossRefGoogle Scholar
  41. 41.
    Pu Z, Liu Q, Jiang P, Asiri AM, Obaid AY, Sun X (2014) CoP nanosheet arrays supported on a Ti plate: an efficient cathode for electrochemical hydrogen evolution. Chem Mater 26:4326–4329.  https://doi.org/10.1021/cm501273s CrossRefGoogle Scholar
  42. 42.
    Gupta S, Patel N, Miotello A, Kothari DC (2015) Cobalt-boride: an efficient and robust electrocatalyst for hydrogen evolution reaction. J Power Sources 279:620–625.  https://doi.org/10.1016/j.jpowsour.2015.01.009 CrossRefGoogle Scholar
  43. 43.
    Pan Y, Lin Y, Chen Y, Liu Y, Liu C (2016) Cobalt phosphide-based electrocatalysts: synthesis and phase catalytic activity comparison for hydrogen evolution. J Mater Chem A 4:4745–4754.  https://doi.org/10.1039/C6TA00575F CrossRefGoogle Scholar
  44. 44.
    Tilak BV, Chen C-P (1993) Generalized analytical expressions for Tafel slope, reaction order and a.c. impedance for the hydrogen evolution reaction (HER): mechanism of HER on platinum in alkaline media. J Appl Electrochem 23:631–640CrossRefGoogle Scholar
  45. 45.
    Conway BE, Jerkiewicz G (1993) Thermodynamic and electrode kinetic factors in cathodic hydrogen sorption into metals and its relationship to hydrogen adsorption and poisoning. J Electroanal Chem 357:47–66.  https://doi.org/10.1016/0022-0728(93)80373-P CrossRefGoogle Scholar
  46. 46.
    Kong D, Wang H, Lu Z, Cui Y (2014) CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc 136:4897–4900.  https://doi.org/10.1021/ja501497n CrossRefGoogle Scholar
  47. 47.
    Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11:4168–4175.  https://doi.org/10.1021/nl2020476 CrossRefGoogle Scholar
  48. 48.
    McKone JR, Marinescu SC, Brunschwig BS, Winkler JR, Gray HB (2014) Earth-abundant hydrogen evolution electrocatalysts. Chem Sci 5:865–878CrossRefGoogle Scholar
  49. 49.
    Alsaç EP, Ülker E, Nune SVK, Dede Y, Karadas F Tuning electronic properties of prussian blue analogues for efficient water oxidation electrocatalysis: experimental and computational studies. Chem Eur J.  https://doi.org/10.1002/chem.201704933
  50. 50.
    Aksoy M, Nune SVK, Karadas F (2016) A novel synthetic route for the preparation of an amorphous Co/Fe prussian blue coordination compound with high electrocatalytic water oxidation activity. Inorg Chem 55:4301–4307.  https://doi.org/10.1021/acs.inorgchem.6b00032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of ChemistryBilkent UniversityAnkaraTurkey
  2. 2.Department of Chemistry, Faculty of Arts & SciencesRecep Tayyip Erdogan UniversityRizeTurkey
  3. 3.UNAM–Institute of Materials Science and NanotechnologyBilkent UniversityAnkaraTurkey

Personalised recommendations