Catalysis Letters

, Volume 148, Issue 2, pp 621–641 | Cite as

Hydroprocessing of Phenanthrene Over Sulfided Fe–W Supported on Modified SBA-15

  • Jonatan R. Restrepo-Garcia
  • Gustavo E. Ramírez
  • Víctor G. Baldovino-Medrano


Heavy oil hydroprocessing requires catalysts with enhanced mesoporosity and moderate acidity. Mesostructured aluminum modified SBA-15 have been identified as suitable catalytic supports for sulfided phases employed in this process. In this work, a series of SBA-15 based materials were synthesized using hexane as a micellar swelling agent for pore widening. Particularly, the effect of the hexane to Pluronic P123 mass ratio on key properties was assessed. Among the synthesized materials, the one prepared with a hexane: P123 mass ratio of 3.5 showed the best textural properties: BET surface area = 499 m2 × g−1, total pore volume = 1.8 cm3 × g−1, and average pore diameter = 27 nm. The acidity of this material was further modified by grafting aluminum over it. The resulting materials were employed as supports for sulfided Fe–W tested in the hydroprocessing of phenanthrene at 11 MPa and 623 K. Catalysts activity was found to related to the dispersion of the oxide precursor of the active metals which in turn was dependent on Al/Si molar ratio of the supports. Catalysts promoted the formation of 9,10-dihydrophenanthrene, a reaction intermediary in phenanthrene hydroprocessing. The catalyst with an Al/Si molar ratio of 0.04 showed the highest selectivity to this compound. The latter was correlated to a higher content of tetrahedral aluminum in the support. In general, the modifications performed over the SBA-15 support enhanced their pore size distributions and acidity and promoted the selective partial hydrogenation for the central ring of phenanthrene. The findings are important for the search of new catalysts in heavy oil hydroprocessing.

Graphical Abstract


Hydroprocessing Phenanthrene SBA-15 Pore widening Acidity Fe–W sulfides 



This work was possible due to the financial support given by VIE-UIS in the frame of the project “Diseño de catalizadores para hidrocraqueo de fracciones tipo gasóleo y estudio del efecto de moléculas nitrogenadas, code 1329”. Jonatan R. Restrepo-Garcia acknowledges COLCIENCIAS for the “Joven Investigador 2012” fellowship, Diana P. Garcia, Emerson Barrios and Luis A. Nemojón for conducting some experiments at the laboratory. We especially acknowledge Laboratorio de Rayos-X – UIS under the direction of Prof. J.A. Henao for XRD measurements, Laboratorio de RMN-UIS under the direction of Prof. Daniel Molina for NMR measurements, Laboratorio de Microscopía-UIS under the direction of Prof. C.A Rios for SEM imaging, and Jhonatan Rodriguez-Pereira for XPS analysis.

Compliance with Ethical Standards

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Supplementary material

10562_2017_2269_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 18 KB)


  1. 1.
    Agudelo JL, Mezari B, Hensen EJM, Giraldo SA, Hoyos LJ (2014) On the effect of EDTA treatment on the acidic properties of USY zeolite and its performance in vacuum gas oil hydrocracking. Appl Catal A 488(0):219–230Google Scholar
  2. 2.
    Al Alwan B, Salley SO, Ng KYS (2014) Hydrocracking of DDGS corn oil over transition metal carbides supported on Al-SBA-15: effect of fractional sum of metal electronegativities. Appl Catal A 485:58–66CrossRefGoogle Scholar
  3. 3.
    Bellussi G, Rispoli G, Landoni A, Millini R, Molinari D, Montanari E et al (2013) Hydroconversion of heavy residues in slurry reactors: developments and perspectives. J Catal 308:189–200CrossRefGoogle Scholar
  4. 4.
    Benazzi E, Leite L, Marchal-George N, Toulhoat H, Raybaud P (2003) New insights into parameters controlling the selectivity in hydrocracking reactions. J Catal 217(2):376–387CrossRefGoogle Scholar
  5. 5.
    Boahene PE, Soni KK, Dalai AK, Adjaye J (2011) Application of different pore diameter SBA-15 supports for heavy gas oil hydrotreatment using FeW catalyst. Appl Catal A 402(1–2):31–40CrossRefGoogle Scholar
  6. 6.
    Cao Z, Zhang X, Xu C, Duan A, Guo R, Zhao Z et al (2017) The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel. Energy Fuels 31(1):805–814CrossRefGoogle Scholar
  7. 7.
    Ramírez J, Gutiérrez-Alejandre A, Sánchez-Minero F, Macías-Alcántara V, Castillo-Villalón P, Oliviero L et al (2012) HDS of 4,6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40. Energy Fuels 26(2):773–782CrossRefGoogle Scholar
  8. 8.
    Cao L, Kruk M (2011) Facile method to synthesize platelet SBA-15 silica with highly ordered large mesopores. J Colloid Interface Sci 361(2):472–476CrossRefGoogle Scholar
  9. 9.
    Zhang W-H, Zhang L, Xiu J, Shen Z, Li Y, Ying P et al (2006) Pore size design of ordered mesoporous silicas by controlling micellar properties of triblock copolymer EO20PO70EO20. Microporous Mesoporous Mater 89(1–3):179–185CrossRefGoogle Scholar
  10. 10.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279(5350):548–552CrossRefGoogle Scholar
  11. 11.
    Boahene PE, Soni KK, Dalai AK, Adjaye J (2012) Hydroprocessing of heavy gas oils using FeW/SBA-15 catalysts: experimentals, optimization of metals loading, and kinetics study. Catal Today 207:101–111CrossRefGoogle Scholar
  12. 12.
    Chandra Mouli K, Soni K, Dalai A, Adjaye J (2011) Effect of pore diameter of Ni–Mo/Al-SBA-15 catalysts on the hydrotreating of heavy gas oil. Appl Catal A 404(1–2):21–29CrossRefGoogle Scholar
  13. 13.
    Ding L, Zheng Y, Zhang Z, Ring Z, Chen J (2007) HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Appl Catal A 319:25–37CrossRefGoogle Scholar
  14. 14.
    Chen W-H, Zhao Q, Lin H-P, Yang Y-S, Mou C-Y, Liu S-B (2003) Hydrocracking in Al-MCM-41: diffusion effect. Microporous Mesoporous Mater 66(2–3):209–218CrossRefGoogle Scholar
  15. 15.
    Dai Y, Zhou YS, Wei Q, Cui QY, Qin Z (2013) Influences of Al modification on the properties and catalytic performance of SBA-15 molecular sieves in hydrocracking. J Fuel Chem Technol 41(12):1502–1506Google Scholar
  16. 16.
    Garg S, Soni K, Kumaran GM, Kumar M, Gupta JK, Sharma LD et al (2008) Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts. Catal Today 130(2–4):302–308CrossRefGoogle Scholar
  17. 17.
    Gómez-Cazalilla M, Infantes-Molina A, Moreno-Tost R, Maireles-Torres PJ, Mérida-Robles J, Rodríguez-Castellón E et al (2009) Al-SBA-15 as a support of catalysts based on chromium sulfide for sulfur removal. Catal Today 143(1–2):137–144CrossRefGoogle Scholar
  18. 18.
    Zhang X, Zhang F, Yan X, Zhang Z, Sun F, Wang Z et al (2007) Hydrocracking of heavy oil using zeolites Y/Al-SBA-15 composites as catalyst supports. J Porous Mater 15(2):145–150CrossRefGoogle Scholar
  19. 19.
    Byambajav E (2003) Hydrocracking of asphaltene with metal catalysts supported on SBA-15. Appl Catal A 252(1):193–204CrossRefGoogle Scholar
  20. 20.
    Chang J, Tsubaki N, Fujimoto K (2001) Elemental sulfur as an effective promoter for the catalytic hydrocracking of Arabian vacuum residue. Fuel 80(11):1639–1643CrossRefGoogle Scholar
  21. 21.
    Restrepo-Garcia JR, Baldovino-Medrano VG, Giraldo SA (2016) Improving the selectivity in hydrocracking of phenanthrene over mesoporous Al-SBA-15 based Fe–W catalysts by enhancing mesoporosity and acidity. Appl Catal A 510:98–109CrossRefGoogle Scholar
  22. 22.
    Byambajav E, Ohtsuka Y (2003) Cracking behavior of asphaltene in the presence of iron catalysts supported on mesoporous molecular sieve with different pore diameters. Fuel 82(13):1571–1577CrossRefGoogle Scholar
  23. 23.
    Song M, Zou C, Niu G, Zhao D (2012) Improving the hydrothermal stability of mesoporous silica SBA-15 by pre-treatment with (NH4)2SiF6. Chin J Catal 33(1):140–151CrossRefGoogle Scholar
  24. 24.
    Rouquerol F, Rouquerol J, Sing K Adosrption by powders and porous solids: principles, methodology and applications. Academic Press, CambridgeGoogle Scholar
  25. 25.
    Rouquerol J, Llewellyn P, Rouquerol F (2007) Is the BET equation applicable to microporous adsorbents?. 160:49–56Google Scholar
  26. 26.
    Harkins WD, Jura G (1944) Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. J Am Chem Soc 66(8):1366–1373CrossRefGoogle Scholar
  27. 27.
    Contescu C, Jagiello J, Schwarz JA (1995) Proton affinity distributions: a scientific basis for the design and construction of supported metal catalysts. In: Poncelet G, Grange JMBDPAJ P (eds) Studies in surface science and catalysis. vol 91, Elsevier, Amsterdam. pp 237–252Google Scholar
  28. 28.
    Contescu C, Popa VT, Miller JB, Ko EI, Schwarz JA (1995) Proton affinity distributions of TiO2-SiO2 and ZrO2-SiO2 mixed oxides and their relationship to catalyst activities for 1-butene isomerization. J Catal 157(1):244–258CrossRefGoogle Scholar
  29. 29.
    Knözinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev 17(1):31–70CrossRefGoogle Scholar
  30. 30.
    ASTM (2017) Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer West Conshohocken: ASTM International, ; [updated 2016; cited 2017 Nov 11]. Available from:
  31. 31.
    Rouxhet PG, Genet MJ (2011) XPS analysis of bio-organic systems. Surf Interface Anal 43(12):1453–1470CrossRefGoogle Scholar
  32. 32.
    Wagner CD, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy: a reference book of standard data for use in X-ray photoelectron spectroscopy. Physical Electronics Division, Perkin-Elmer Corp, Eden PrairieGoogle Scholar
  33. 33.
    Zhao D, Wan Y (2007) Chapter 8 The synthesis of mesoporous molecular sieves. In: Jiří Čejka HvBAC, Ferdi S (eds) Studies in surface science and catalysis. vol 168, Elsevier, Amsterdam, pp 241–243Google Scholar
  34. 34.
    Lei Z, Gao L, Shui H, Chen W, Wang Z, Ren S (2011) Hydrotreatment of heavy oil from a direct coal liquefaction process on sulfided Ni–W/SBA-15 catalysts. Fuel Process Technol 92(10):2055–2060CrossRefGoogle Scholar
  35. 35.
    Gevert BS, Otterstedt J-E (1987) Upgrading of directly liquefied biomass to transportation fuels: catalytic cracking. Biomass 14(3):173–183CrossRefGoogle Scholar
  36. 36.
    Thommes M, Kaneko K, Neimark Alexander V, Olivier James P, Rodriguez-Reinoso F, Rouquerol J et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051CrossRefGoogle Scholar
  37. 37.
    Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N et al (1994) Recommendations for the characterizations of porous solids (Technical Report). Pure Appl Chem 66(8):1739–1758CrossRefGoogle Scholar
  38. 38.
    Sharma P, Park SD, Park KT, Park JH, Jang CY, Nam SC et al (2013) Mesoporous cellular foams supported Fe2.0SiW12O40: synthesis, characterization and application to CO2 sorption. Powder Technol 233(0):161–168CrossRefGoogle Scholar
  39. 39.
    Mora ID, Méndez E, Duarte LJ, Giraldo SA (2014) Effect of support modifications for CoMo/γ-Al2O3 and CoMo/ASA catalysts in the hydrodeoxygenation of guaiacol. Appl Catal A 474:59–68CrossRefGoogle Scholar
  40. 40.
    Hu W, Luo Q, Su Y, Chen L, Yue Y, Ye C et al (2006) Acid sites in mesoporous Al-SBA-15 material as revealed by solid-state NMR spectroscopy. Microporous Mesoporous Mater 92(1–3):22–30CrossRefGoogle Scholar
  41. 41.
    Ahmed Ali S, Elias Biswas M, Yoneda T, Miura T, Hamid H, Iwamatsu E et al (1999) A novel catalyst for heavy oil hydrocracking. In: Hideshi H, Kiyoshi O (eds) Studies in surface science and catalysis. vol 121, Elsevier, Amsterdam pp 407–410Google Scholar
  42. 42.
    Blanchard J, Breysse M, Fajerwerg K, Louis C, Hédoire CE, Sampieri A et al (2005) Acidic zeolites and Al-SBA-15 as supports for sulfide phases: application to hydrotreating reactions. Stud Surf Sci Catal 158:1517–1524CrossRefGoogle Scholar
  43. 43.
    Lualdi M, Di Carlo G, Lögdberg S, Järås S, Boutonnet M, La Parola V et al (2012) Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts. Appl Catal A 443–444(0):76–86CrossRefGoogle Scholar
  44. 44.
    Olivas A, Zepeda TA (2009) Impact of Al and Ti ions on the dispersion and performance of supported NiMo(W)/SBA-15 catalysts in the HDS and HYD reactions. Catal Today 143(1–2):120–125CrossRefGoogle Scholar
  45. 45.
    Dragoi B, Dumitriu E, Bennici S, Auroux A (2008) Acidic and adsorptive properties of Al modified SBA-15 samples. In: Antoine Gédéon PM, Florence B (eds) Studies in surface science and catalysis. vol 174, Elsevier, Amsterdam, pp 953–956Google Scholar
  46. 46.
    Koekkoek AJJ, van Veen JAR, Gerrtisen PB, Giltay P, Magusin PCMM., Hensen EJM (2012) Brønsted acidity of Al/SBA-15. Microporous Mesoporous Mater 151:34–43CrossRefGoogle Scholar
  47. 47.
    Zhu J, Wang J, Sun X, Yang J (2012) Effect of Al-SBA-15 preparation method on the performance of hydrocracking catalyst with Al-SBA-15/USY composite support. Pet Process Petrochem 43(3):28–32Google Scholar
  48. 48.
    Kouzu M, Kuriki Y, Uchida K, Sakanishi K, Sugimoto Y, Saito I et al (2005) Catalytic hydrocracking of petroleum residue over carbon-supported Nickel–Molybdenum sulfides. Energy Fuels 19(3):725–730CrossRefGoogle Scholar
  49. 49.
    Chareonpanich M, Zhang Z-G, Tomita A (1996) Hydrocracking of aromatic hydrocarbons over USY-Zeolite. Energy Fuels 10(4):927–931CrossRefGoogle Scholar
  50. 50.
    Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117(1–2):75–90CrossRefGoogle Scholar
  51. 51.
    Baldovino-Medrano VG, Minh TL, Van Driessche I, Bruneel E, Gaigneaux EM (2011) Influence of graphite as a shaping agent of Bi molybdate powders on their mechanical, physicochemical, and catalytic properties. Ind Eng Chem Res 50(9):5467–5477CrossRefGoogle Scholar
  52. 52.
    Baldovino-Medrano VG, Alcázar C, Colomer MT, Moreno R, Gaigneaux EM (2013) Understanding the molecular basics behind catalyst shaping: preparation of suspensions of vanadium–aluminum mixed (hydr)oxides. Appl Catal A 468(Supplement C):190–203CrossRefGoogle Scholar
  53. 53.
    Pérez Martínez DDJ, Acevedo Quiroga GA, Giraldo Duarte SA, Centeno Hurtado A (2011) Surface characterization of borated γ-alumina by using proton affinity distributions. Rev Facultad de Ingeniería Univ de Antioquia. 2011:23–30Google Scholar
  54. 54.
    Rotole JA, Sherwood PMA (1998) Gamma-alumina (γ-Al2O3) by XPS. Surf Sci Spectra 5(1):18–24CrossRefGoogle Scholar
  55. 55.
    Mora-Vergara ID, Hernández Moscoso L, Gaigneaux EM, Giraldo SA, Baldovino-Medrano VG (2017) Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catal TodayGoogle Scholar
  56. 56.
    NIST. X-ray Photoelectron Spectroscopy Database MD, Gaithersburg: National Institute of Standards and Technology (2003) [11–11-2017]. Available from:
  57. 57.
    Cotton FA, Wilkinson G, Murillo CA, Manfred B (1999) Advanced inorganic chemsitry, 6th edn. Wiley, New YorkGoogle Scholar
  58. 58.
    Cazaux J (2000) About the charge compensation of insulating samples in XPS. J Electron Spectrosc Related Phenom 113(1):15–33CrossRefGoogle Scholar
  59. 59.
    Andreozzi GB, Hålenius U, Skogby H (2001) Spectroscopic active IVFe3+–VIFe3+ clusters in spinel–magnesioferrite solid solution crystals: a potential monitor for ordering in oxide spinels. Phys Chem Miner 28(7):435–444CrossRefGoogle Scholar
  60. 60.
    Ben Tayeb K, Lamonier C, Lancelor C, Fournier M, Payen E, Bouduelle A et al (2010) Study of the active phase of NiW hydrocracking sulfided catalyts obtained from innovative heteopolyanion based preparation. Catal Today 150:207–212CrossRefGoogle Scholar
  61. 61.
    Murerll SS, Wachs LL, McVicker IE, Sherman GB, Chan LG (1985) S, et al. Solid state chemistry of tunsgten oxide supported on alumina. In: Grasselli R, ea (eds) In Solid state chemistry in catalysis. American Chemical Society, Washington DCGoogle Scholar
  62. 62.
    Klimova T, Reyes J, Gutiérrez O, Lizama L (2008) Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: effect of support Si/Al ratio. Appl Catal A 335(2):159–171CrossRefGoogle Scholar
  63. 63.
    Zhang D, Zhao J, Zhang Y, Lu X (2016) Catalytic hydrogenation of phenanthrene over NiMo/Al2O3 catalysts as hydrogen storage intermediate. Int J Hydrog Energy 41(27):11675–11681CrossRefGoogle Scholar
  64. 64.
    Yu Z, Wang Q, Chen L, Deng F (2012) Brønsted/lewis acid sites synergy in H-MCM-22 zeolite studied by 1H and 27Al DQ-MAS NMR spectroscopy. Chin J Catal 33(1):129–139CrossRefGoogle Scholar
  65. 65.
    Manrique C, Guzmán A, Pérez-Pariente J, Márquez-Álvarez C, Echavarría A (2016) Vacuum gas-oil hydrocracking performance of Beta zeolite obtained by hydrothermal synthesis using carbon nanotubes as mesoporous template. Fuel 182:236–247CrossRefGoogle Scholar
  66. 66.
    Leite L, Benazzi E, Marchal-George N (2001) Hydrocracking of phenanthrene over bifunctional Pt catalysts. Catal Today 65(2–4):241–247CrossRefGoogle Scholar
  67. 67.
    Du H, Fairbridge C, Yang H, Ring Z (2005) The chemistry of selective ring-opening catalysts. Appl Catal A 294(1):1–21CrossRefGoogle Scholar
  68. 68.
    Korre SC, Klein MT, Quann RJ (1997) Hydrocracking of polynuclear aromatic hydrocarbons. Development of rate laws through inhibition studies. Ind Eng Chem Res 36(6):2041–2050CrossRefGoogle Scholar
  69. 69.
    Benito AM, Martínez MT (1996) Catalytic hydrocracking of an asphaltenic coal residue. Energy Fuels 10(6):1235–1240CrossRefGoogle Scholar
  70. 70.
    Phan-Vu D-H, Tan C-S (2017) Synthesis of phthalate-free plasticizers by hydrogenation in water using RhNi bimetallic catalyst on aluminated SBA-15. RSC Adv 7(30):18178–18188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Centro de Investigaciones en Catálisis (@CICAT UIS), Parque Tecnológico Guatiguará (PTG)Universidad Industrial de SantanderPiedecuesta (Santander)Colombia
  2. 2.Laboratorio de Ciencia de Superficies (@Csss_UIS), Parque Tecnológico Guatiguará (PTG)Universidad Industrial de SantanderPiedecuesta (Santander)Colombia

Personalised recommendations