Advertisement

Catalysis Letters

, Volume 148, Issue 2, pp 523–530 | Cite as

Spreading CdS Nanocrystals on GdBO3:Ce,Tb Substrates for Enhancing Their Photocatalytic Performance

  • Kun Wang
  • Wanli Qincheng
  • Lingbo Xiao
  • Cao Cui
  • Zhengquan Li
Article
  • 168 Downloads

Abstract

CdS nanocrystals (NCs) is a very important visible-light-driven photocatalyst due to their optimal band gap of 2.4 eV, but their photocatalytic performance is still restrained by a few factor such as easy aggregation and weak response to UV light. In this work, we employ spindle-like GdBO3:Ce,Tb particles as seeds to grow some CdS NCs on their surface. In the prepared GdBO3:Ce,Tb/CdS composite photocatalysts, the GdBO3:Ce,Tb particles not only serve as a substrate to improve the stability of CdS NCs but also work as a light-transducer to convert the UV light to visible emissions to activate the CdS NCs. In contrast to pure CdS NCs, the hybrid photocatalyst exhibit an enhanced photocatalytic performance due to the additional utilization of the UV light and the substrate effect. The hybrid photocatalysts have been characterized by XRD, TEM, and PL etc. and their working mechanism has been elucidated.

Graphical Abstract

Keywords

Photocatalysts Nanocomposites CdS Rare-earth Nanoparticles Lanthanide doping 

Notes

Acknowledgements

The authors acknowledge financial support from National Natural Science Foundation of China (No 21273203) and Natural Science Foundation of Zhejiang Province (No R15B010001). Mr. Qincheng also thanks for the financial support from New Talent Project for Undergraduates in Zhejiang Province (No 2016R404044).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2017_2266_MOESM1_ESM.doc (3.8 mb)
Supplementary material 1 (DOC 3908 KB)

References

  1. 1.
    Konstantinou IK, Albanis TA (2004) Appl Catal B 49:1CrossRefGoogle Scholar
  2. 2.
    Wang H, Zhang L, Chen Z et al (2014) Chem Soc Rev 43:5234CrossRefGoogle Scholar
  3. 3.
    Chen X, Shen S, Guo L et al (2010) Chem Rev 110:6503CrossRefGoogle Scholar
  4. 4.
    Meng X, Liu L, Ouyang S et al (2016) Adv Mater 28:6781CrossRefGoogle Scholar
  5. 5.
    Yuan Q, Liu D, Zhang N et al (2017) Angew Chem Int Ed 129:4270CrossRefGoogle Scholar
  6. 6.
    Li X, Yu J, Jaroniec M (2016) Chem Soc Rev 45:2603CrossRefGoogle Scholar
  7. 7.
    Feng L, He F, Liu B et al (2016) Chem Mater 28:7935CrossRefGoogle Scholar
  8. 8.
    Yu J, Low J, Xiao W et al (2014) J Am Chem Soc 136:8839CrossRefGoogle Scholar
  9. 9.
    Jiang W, Bai S, Wang L et al (2016) Small 12:1640CrossRefGoogle Scholar
  10. 10.
    Tay Q, Kanhere P, Ng C et al (2015) Chem Mater 27:4930CrossRefGoogle Scholar
  11. 11.
    Mclaren A, Solis T, Li G et al (2009) J Am Chem Soc 131:12540CrossRefGoogle Scholar
  12. 12.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95:735CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Han L, Wang C et al (2017) ACS Catal 7:1470CrossRefGoogle Scholar
  14. 14.
    Li Q, Guo B, Yu J et al (2011) J Am Chem Soc 133:10878CrossRefGoogle Scholar
  15. 15.
    Kuehnel M, Orchard K, Dalle K et al (2017) J Am Chem Soc 139:7217CrossRefGoogle Scholar
  16. 16.
    Wang Q, Lian J, Ma Q et al (2017) Catal Today 281:662CrossRefGoogle Scholar
  17. 17.
    Majeed I, Nadeem M, Al-Oufi M et al (2016) Appl Catal B 182:266CrossRefGoogle Scholar
  18. 18.
    Qiu B, Zhu Q, Du M et al (2017) Angew Chem Int Ed 129:2728CrossRefGoogle Scholar
  19. 19.
    Yang C, Cheng J, Chen Y et al (2017) Appl Surf Sci 420:252CrossRefGoogle Scholar
  20. 20.
    Hu Y, Liu Y, Qian H et al (2010) Langmuir 26:18570CrossRefGoogle Scholar
  21. 21.
    Zhu H, Jiang R, Xiao L et al (2009) J Hazard Mater 169:933CrossRefGoogle Scholar
  22. 22.
    Bai S, Li H, Guan Y et al (2011) Appl Surf Sci 257:6406CrossRefGoogle Scholar
  23. 23.
    Liu Y, Zhou L, Hu Y et al (2011) J Mater Chem 21:18359CrossRefGoogle Scholar
  24. 24.
    Tou M, Mei Y, Bai S et al (2016) Nanoscale 8:553CrossRefGoogle Scholar
  25. 25.
    Li Y, Dong L, Huang C et al (2016) RSC Adv 6:54241CrossRefGoogle Scholar
  26. 26.
    Wu L, Yu J, Fu X (2006) J Mol Catal A 244:25CrossRefGoogle Scholar
  27. 27.
    Hu Y, Gao X, Yu L et al (2013) Angew Chem Int Ed 125:5746CrossRefGoogle Scholar
  28. 28.
    Zhang P, Liu Y, Tian B et al (2017) Catal Today 281:181CrossRefGoogle Scholar
  29. 29.
    Chen Z, Xu Y (2013) ACS Appl Mater Interface 5:13353CrossRefGoogle Scholar
  30. 30.
    Zhang F, Hao L, Wang Y et al (2016) CrystEngComm 18:6013CrossRefGoogle Scholar
  31. 31.
    Li Z, Zeng J, Li Y (2007) Small 3:438CrossRefGoogle Scholar
  32. 32.
    Ren M, Lin J, Dong Y et al (1999) Chem Mater 11:1576CrossRefGoogle Scholar
  33. 33.
    Szczeszak A, Grzyb T, Barszcz B et al (2013) Inorg Chem 52:4934CrossRefGoogle Scholar
  34. 34.
    Jia G, You H, Yang M et al (2009) J Phys Chem C 113:16638CrossRefGoogle Scholar
  35. 35.
    Dong Q, Wang Y, Wang Z et al (2010) J Phys Chem C 114:9245CrossRefGoogle Scholar
  36. 36.
    Li Y, Zhang J, Zhang X et al (2009) Chem Mater 21:468CrossRefGoogle Scholar
  37. 37.
    Xu Z, Li C, Yang D et al (2010) Phys Chem Chem Phys 12:11315CrossRefGoogle Scholar
  38. 38.
    Zhang X, Zhou L, Pang Q et al (2014) Opt Mater 36:1112CrossRefGoogle Scholar
  39. 39.
    Li Z, Zeng Y, Qian H et al (2012) CrystEngComm 14:3959CrossRefGoogle Scholar
  40. 40.
    Shi Y, Li H, Wang L et al (2012) ACS Appl Mater Inter 4:4800CrossRefGoogle Scholar
  41. 41.
    Kumar S, Khanchandani S, Thirumal M et al (2014) ACS Appl Mater Inter 6:13221CrossRefGoogle Scholar
  42. 42.
    Huang X, Yu D, Zhang Q (2009) J Appl Phys 106:113521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Normal UniversityJinhuaPeople’s Republic of China

Personalised recommendations