Advertisement

Catalysis Letters

, Volume 148, Issue 2, pp 699–711 | Cite as

Nanostructured Zirconium Pyrophosphate Catalyzed Diastereoselective Synthesis of β-Amino Ketones via One-Pot Three-Component Mannich Reaction

  • Houda Maati
  • Othmane Amadine
  • Younes Essamlali
  • Aziz Fihri
  • Abdallah Rhihil
  • Christophe Len
  • Mohamed Zahouily
Article
  • 107 Downloads

Abstract

In this study, ZrP2O7 catalytic nanomaterials were prepared by co-precipitation and polyvinylpyrrolidone assisted methods. These nanomaterials were structurally characterized by XRD, N2 adsorption/desorption, TGA, SEM and TEM microscopy techniques. This study investigated the application of these nanomaterials in the synthesis of various β-amino carbonyls via a one-pot-three-component condensation of aldehydes, ketones and amines. As a result, high efficiency was obtained in a water–ethanol mixed solvent at room temperature. Under the optimized conditions, the catalyst prepared via the PVP assisted method exhibited higher catalytic activity and higher diastereoselectivity when compared to the catalyst prepared by co-precipitation. Moreover, the ZrP2O7 catalysts were easily recovered and reused several times with only a slight loss of activity. At the conclusion of this study, a possible mechanism of the Mannich reaction over ZrP2O7 catalysts was also proposed and discussed.

Graphical abstract

Keywords

Nanocatalyst Zirconium pyrophosphate Diastereoselectivity Mannich reaction β-amino ketones 

Notes

Acknowledgements

The financial assistance of the Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), towards this research is hereby acknowledged.

Supplementary material

10562_2017_2264_MOESM1_ESM.doc (818 kb)
Supplementary material 1 (DOC 818 KB)

References

  1. 1.
    Anderson EB, Long TE (2010) Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 51:2447–2454CrossRefGoogle Scholar
  2. 2.
    Dua R, Shrivastava S, Sonwane SK, Srivastava SK (2011) Pharmacological significance of synthetic heterocycles scaffold: a review. Adv Biol Res 5:120–144Google Scholar
  3. 3.
    Jones RA (1992) The Chemistry of Heterocyclic Compounds, Pyrroles. Wiley, TorontoCrossRefGoogle Scholar
  4. 4.
    Blicke FF (1954) The Mannich reaction in Organic reactions. Wiley Online Library,Google Scholar
  5. 5.
    Trmontini A, Angiolini L (1994) Mannich bases: chemistry and uses. CRC press Inc, Boca RatonGoogle Scholar
  6. 6.
    Arend M, Westermann B, Risch N (1998) Modern variants of the Mannich reaction. Angew Chem Int Ed 37:1044–1070CrossRefGoogle Scholar
  7. 7.
    Kleinman EF (1991) In comprehensive organic synthesis. Pergamon Press, OxfordGoogle Scholar
  8. 8.
    Mannich C, Krösche W (1912) Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin. Arch Pharm (Weinheim) 250:647–667CrossRefGoogle Scholar
  9. 9.
    Akiyama T, Matsuda K, Fuchibe K (2005) HCl-catalyzed stereoselective Mannich reaction in H2O-SDS system. Synlett 2:322–324CrossRefGoogle Scholar
  10. 10.
    Zeng H, Li H, Shao H (2009) One-pot three-component Mannich-type reactions using sulfamic acid catalyst under ultrasound irradiation. Ultrason Sonochem 16:758–762CrossRefGoogle Scholar
  11. 11.
    Manabe K, Mori Y, Kobayashi S (2001) Three-component carbon–carbon bond-forming reactions catalyzed by a Bronsted acid–surfactant-combined catalyst in water. Tetrahedron 57:2537–2544CrossRefGoogle Scholar
  12. 12.
    Kobayashi S, Ishitani H, Komiyama S et al (1996) A novel mannich-type reaction: lanthanide triflate-catalyzed reactions of N-(alpha-aminoalkyl) benzotriazoles with silyl enolates. Tetrahedron Lett 37:3731–3734CrossRefGoogle Scholar
  13. 13.
    Kidwai M, Jahan A (2010) Cerium chloride (CeCl3·7H2O) as a highly efficient catalyst for one-pot three-component Mannich reaction. J Braz Chem Soc 21:2175–2179CrossRefGoogle Scholar
  14. 14.
    Engberts JBFN, Feringa BL, Keller E, Otto S (1996) Lewis-acid catalysis of carbon–carbon bond forming reactions in water. Recl des Trav Chim des Pays-Bas 115:457–464CrossRefGoogle Scholar
  15. 15.
    Verkade JMM, van Hemert LJC, Quaedflieg PJLM, Rutjes FPJT (2008) Organocatalysed asymmetric Mannich reactions. Chem Soc Rev 37:29–41CrossRefGoogle Scholar
  16. 16.
    Enders D, Grondal C, Vrettou M, Raabe G (2005) Asymmetric synthesis of selectively protected amino sugars and derivatives by a direct organocatalytic Mannich reaction. Angew Chem Int Ed Engl 44:4079–4083CrossRefGoogle Scholar
  17. 17.
    Hayashi Y, Okano T, Itoh T et al (2008) Direct organocatalytic Mannich reaction of acetaldehyde: an improved catalyst and mechanistic insight from a computational study. Angew Chem Int Ed Engl 47:9053–9058CrossRefGoogle Scholar
  18. 18.
    Rafiee E, Eavani S, Nejad FK, Joshaghani M (2010) Cs2.5H0.5PW12O40 catalyzed diastereoselective synthesis of β-amino ketones via three component Mannich-type reaction in water. Tetrahedron 66:6858–6863CrossRefGoogle Scholar
  19. 19.
    Vadivel P, Maheswari CS, Lalitha A (2013) Synthesis of β-amino carbonyl compounds via Mannich reaction using sulfated MCM-41. Int J Innov Technol Explor Eng 2:267–270Google Scholar
  20. 20.
    Reddy BM, Sreekanth PM, Lakshmanan P, Khan A (2006) Synthesis, characterization and activity study of SO4 2–/CexZr1–xO2 solid superacid catalyst. J Mol Catal A Chem 244:1–7CrossRefGoogle Scholar
  21. 21.
    Saadatjoo N, Golshekan M, Shariati S et al (2012) Ultrasound-assisted synthesis of b-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst. Arab J Chem 10:S735–S741CrossRefGoogle Scholar
  22. 22.
    Magee DI, Dabiri M, Salehi P, Torkian L (2011) Highly efficient one-pot three-component Mannich reaction catalyzed by ZnO-nanoparticles in water. Arkivoc 11:156–164Google Scholar
  23. 23.
    Nagrik DM, Ambhore DM, Gawande MB (2010) One-pot preparation of β–amino carbonyl compounds by Mannich reaction using MgO/ZrO2 as effective and reusable catalyst. Int J Chem 2:98–101Google Scholar
  24. 24.
    Reddy BM, Patil MK, Reddy BT (2008) An efficient and ecofriendly WOx–ZrO2 solid acid catalyst for classical Mannich reaction. Catal Lett 125:97–103CrossRefGoogle Scholar
  25. 25.
    Choi Y, Park DS, Yun HJ et al (2012) Mesoporous siliconiobium phosphate as a pure Bronsted acid catalyst with excellent performance for the dehydration of glycerol to acrolein. ChemSusChem 5:2460–2468CrossRefGoogle Scholar
  26. 26.
    Chen Y-W, Chiuping L (1992) Chromia-chrominum phosphates as solid acid catalysts. Catal Lett 16:447–453CrossRefGoogle Scholar
  27. 27.
    Chen Y-W, Wang P-J, Wang W-J (1990) Iron oxide-iron phosphate phosphates as solid acid catalysts. Catal Lett 6:187–194CrossRefGoogle Scholar
  28. 28.
    Carniti P, Gervasini A, Biella S, Auroux A (2006) Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: fructose dehydration reaction. Catal Today 118:373–378CrossRefGoogle Scholar
  29. 29.
    Wang F, Dubois JL, Ueda W (2010) Catalytic performance of vanadium pyrophosphate oxides (VPO) in the oxidative dehydration of glycerol. Appl Catal A Gen 376:25–32CrossRefGoogle Scholar
  30. 30.
    Onoda H, Ohta T, Tamaki J, Kojima K (2005) Decomposition of trifluoromethane over nickel pyrophosphate catalysts containing metal cation. Appl Catal A Gen 288:98–103CrossRefGoogle Scholar
  31. 31.
    Liu Q, Zhang Z, Du Y et al (2008) Rare earth pyrophosphates: effective catalysts for the production of acrolein from vapor-phase dehydration of glycerol. Catal Lett 127:419–428CrossRefGoogle Scholar
  32. 32.
    Sato Y, Shen Y, Nishida M et al (2012) Proton conduction in non-doped and acceptor-doped metal pyrophosphate (MP2O7) composite ceramics at intermediate temperatures. J Mater Chem 22:3973CrossRefGoogle Scholar
  33. 33.
    Zhang YC, Cheng WD, Wu DS et al (2004) Crystal and band structures, bonding, and optical properties of solid compounds of alkaline indium(III) pyrophosphates MInP2O7 (M = Na, K, Rb, Cs). Chem Mater 16:4150–4159CrossRefGoogle Scholar
  34. 34.
    Inoue S, Nobuyuki O (1998) Stationary phase material chromatography, U.S. Patent 5.728.463Google Scholar
  35. 35.
    Loukah M, Coudurier G, Vedrine JC (1992) Oxidative dehydrogenation of ethane on chromium modified zirconium phosphates. Stud Surf Sci Catal 72:191–201CrossRefGoogle Scholar
  36. 36.
    Ghomi JS, Kiani M, Ziarati A, Alavi HS (2014) Highly efficient synthesis of benzopyranopyridines via ZrP2O7 nanoparticles catalyzed multicomponent reactions of salicylaldehydes with malononitrile and thiols. J Sulfur Chem 35:450–457CrossRefGoogle Scholar
  37. 37.
    Javidan A, Ziarati A, Ghomi JS (2014) Ultrasonics sonochemistry simultaneous sonication assistance for the synthesis of tetrahydropyridines and its efficient catalyst ZrP2O7 nanoparticles. Ultrason Sonochem 21:1150–1154CrossRefGoogle Scholar
  38. 38.
    Tada A, Oishi M, Okazaki N et al (1994) Grinding of zirconium pyrophosphate and its catalytic activity for 1-butene isomerition. Stud Surf Sci Catal 90:311–316CrossRefGoogle Scholar
  39. 39.
    Amadine O, Maati H, Abdelouhadi K et al (2014) Ceria-supported copper nanoparticles: a highly efficient and recyclable catalyst for N-arylation of indole. J Mol Catal A Chem 395:409–419CrossRefGoogle Scholar
  40. 40.
    Hassine A, Sebti S, Solhy A, Zahouily M (2013) Palladium supported on natural phosphate: catalyst for Suzuki coupling reactions in water. Appl Catal A Gen 450:13–18CrossRefGoogle Scholar
  41. 41.
    Solhy A, Smahi A, El Badaoui H et al (2003) Efficient hydration of nitriles to amides catalyzed by sodium nitrate modified fluoroapatite. ChemInform 34:151–159CrossRefGoogle Scholar
  42. 42.
    Saber A, Smahi A, Solhy A et al (2003) Heterogeneous catalysis of Friedel-Crafts alkylation by the fluorapatite alone and doped with metal halides. J Mol Catal A Chem 202:229–237CrossRefGoogle Scholar
  43. 43.
    Hajipour AR, Karimi H (2014) Synthesis and characterization of hexagonal zirconium phosphate nanoparticles. Mater Lett 116:356–358CrossRefGoogle Scholar
  44. 44.
    Mohan S, Subramanian B (2013) A strategy to fabricate bismuth ferrite (BiFeO3) nanotubes from electrospun nanofibers and their solar light-driven photocatalytic properties. RSC Adv 3:23737CrossRefGoogle Scholar
  45. 45.
    Ponhan W, Maensiri S (2009) Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci 11:479–484CrossRefGoogle Scholar
  46. 46.
    Rajeh AO, Szirtes L (1995) Investigations of crystalline structure of gamma-zirconium phosphate. J Radioanal Nucl Chem 195:319–322CrossRefGoogle Scholar
  47. 47.
    Trobajo C, Khainakov SA, Espina A, Garcia JR (2000) On the synthesis of α-zirconium phosphate. Chem Mater 12:1787–1790CrossRefGoogle Scholar
  48. 48.
    Ali AF, Hanna AA, Gad AE (2008) Synthesis of α-zirconium phosphate from acertyl acetonate solution; A comparative synthesis study of α -ZrP. Phosphorus Res Bull 22:32–40CrossRefGoogle Scholar
  49. 49.
    Srilakshmi C, Ramesh K, Nagaraju P et al (2006) Studies on preparation, characterization and ammoxidation functionality of zirconium phosphate-supported V2O5 catalysts w. Catal Lett 106:115–122CrossRefGoogle Scholar
  50. 50.
    Drot R, Lindecker C, Fourest B, Simoni E (1998) Surface characterization of zirconium and thorium phosphate compounds. New J Chem 22:1105–1109CrossRefGoogle Scholar
  51. 51.
    Finck N, Drot R, Bion FM et al (2007) Temperature effects on the surface acidity properties of zirconium diphosphate. J Colloid Interface Sci 312:230–236CrossRefGoogle Scholar
  52. 52.
    Gonzalez NG, Regil EO, Simoni E, Diaz CEB (2010) Effect of organic acids on sorption of uranyl ions in solution onto ZrP2O7. J Radioanal Nucl Chem 283:409–415CrossRefGoogle Scholar
  53. 53.
    Boumoud B, Zetchi A, Boumoud T, Debache A (2012) SiO2-OSbCl2 as highly effective and reusable heterogeneous catalyst for Mannich condensation in solvent or under solvent-free conditions. J Chem Pharm Res 4:2517–2521Google Scholar
  54. 54.
    Mansoor SS, Aswin K, Logaiya K, Sudhan SPN (2012) An efficient synthesis of β-amino ketone compounds through one-pot three-component Mannich-type reactions using bismuth nitrate as catalyst. J Saudi Chem Soc 19(4):379–386CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Houda Maati
    • 1
    • 2
  • Othmane Amadine
    • 1
  • Younes Essamlali
    • 1
  • Aziz Fihri
    • 1
  • Abdallah Rhihil
    • 2
  • Christophe Len
    • 3
    • 4
  • Mohamed Zahouily
    • 1
    • 2
  1. 1.MASCIR Foundation, Rabat DesignRabatMorocco
  2. 2.Laboratoire de Matériaux, Catalyse et Valorisation des Ressources Naturelles, URAC 24, FSTUniversité Hassan II-CasablancaMohammediaMorocco
  3. 3.PSL Research University, Chimie ParisTech, CNRS, Institut de Recherche de Chimie ParisParisFrance
  4. 4.Sorbonne Universités, Université de Technologie Compiègne (UTC)Compiègne CedexFrance

Personalised recommendations