Catalysis Letters

, Volume 148, Issue 2, pp 586–600 | Cite as

High Stability of Ruthenium–Copper-Based Catalysts for Epoxidation of Propylene

  • Anusorn Seubsai
  • Chalinee Uppala
  • Palida Tiencharoenwong
  • Thanaphat Chukeaw
  • Metta Chareonpanich
  • Bahman Zohour
  • Daniel Noon
  • Selim Senkan
Article
  • 182 Downloads

Abstract

The catalytic performance of RuO2–CuO/SiO2-based materials for the direct gas-phase epoxidation of propylene using molecular oxygen at atmospheric pressure was investigated as a function of the Ru/Cu weight ratio and the addition of NaCl, TeO2, Cs2O, or TiO2. The best performing catalysts were then assessed for stability. Doping with NaCl delivered the highest PO yield, but its catalytic activity dropped quickly within a few hours due to the loss of chloride content. The same catalyst doped instead with TeO2, Cs2O, or TiO2 could maintain stable catalytic performance for 6 h. However, the addition of TeO2 presented the best improvement in terms of PO selectivity. Further optimization of PO selectivity for the RuO2–CuO–TeO2/SiO2 catalyst system was accomplished by varying reactor temperature and total feed gas flow rate. The highest PO selectivity could be achieved at 47% (255 gPO h−1 kgcat −1, 0.35% propylene conversion). The time-on-stream test revealed excellent catalytic stability within the 12 h of test period without any deactivation.

Graphical Abstract

Keywords

Copper Epoxidation Propylene Propylene oxide Ruthenium, tellurium 

Notes

Acknowledgements

This work was financially supported by Kasetsart University Research and Development Institute (KURDI), Center of Excellence on Petrochemical and Materials Technology, National Science and Technology Development Agency (NSTDA), Thailand Research Fund (TRF) and Commission on Higher Education (MRG5980240, IRG5980004).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10562_2017_2262_MOESM1_ESM.docx (333 kb)
Supplementary material 1 (DOCX 333 KB)

References

  1. 1.
    Nijhuis TA, Makkee M, Moulijn JA, Weckhuysen BM (2006) Ind Eng Chem Res 45:3447CrossRefGoogle Scholar
  2. 2.
    Khatib SJ, Oyama ST (2015) Cat Rev Sci Eng 57:306CrossRefGoogle Scholar
  3. 3.
    Prieto A, Palomino M, Diaz U, Corma A (2014) Catal Today 227:87CrossRefGoogle Scholar
  4. 4.
    Ring KL, deGuzman M (2016) Propylene oxide: IHS chemical, chemical economics handbookGoogle Scholar
  5. 5.
    Lu JQ, Bravo-Suarez JJ, Haruta M, Oyama ST (2006) Appl Catal A 302:283CrossRefGoogle Scholar
  6. 6.
    Zemichael FW, Palermo A, Tikhov MS, Lambert RM (2002) Catal Lett 80:93CrossRefGoogle Scholar
  7. 7.
    Chimentao RJ, Medina F, Fierro JLG, Llorca J, Sueiras JE, Cesteros Y, Salagre P (2007) J Mol Catal A 274:159CrossRefGoogle Scholar
  8. 8.
    Wang RP, Guo XW, Wang XS, Hao JQ (2003) Catal Lett 90:57CrossRefGoogle Scholar
  9. 9.
    Lu JQ, Luo MF, Lei H, Li C (2002) Appl Catal A 237:11CrossRefGoogle Scholar
  10. 10.
    Lu JQ, Luo MF, Lei H, Bao XH, Li C (2002) J Catal 211:552CrossRefGoogle Scholar
  11. 11.
    Carter EA, Goddard WA (1988) J Catal 112:80CrossRefGoogle Scholar
  12. 12.
    Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566CrossRefGoogle Scholar
  13. 13.
    Wang CF, Guo XW, Wang XS, Wang RP, Hao JQ (2004) Catal Lett 96:79CrossRefGoogle Scholar
  14. 14.
    Uphade BS, Okumura M, Yamada N, Tsubota S, Haruta M(2000) Stud Surf Sci Catal 130:833CrossRefGoogle Scholar
  15. 15.
    Sacaliuc E, Beale AM, Weckhuysen BM, Nijhuis TA (2007) J Catal 248:235CrossRefGoogle Scholar
  16. 16.
    Lu J, Zhang X, Bravosuarez J, Bando K, Fujitani T, Oyama S (2007) J Catal 250:350CrossRefGoogle Scholar
  17. 17.
    Torres D, Lopez N, Illas F, Lambert RM (2005) J Am Chem Soc 127:10774CrossRefGoogle Scholar
  18. 18.
    Vaughan OPH, Kyriakou G, Macleod N, Tikhov M, Lambert RM (2005) J Catal 236:401CrossRefGoogle Scholar
  19. 19.
    Yang X, Kattel S, Xiong K, Mudiyanselage K, Rykov S, Senanayake SD, Rodriguez JA, Liu P, Stacchiola DJ, Chen JG (2015) Angew Chem Int Ed 54:11946CrossRefGoogle Scholar
  20. 20.
    He JL, Zhai QG, Zhang QH, Deng WP, Wang Y (2013) J Catal 299:53CrossRefGoogle Scholar
  21. 21.
    Yang LJ, He JL, Zhang QH, Wang Y (2010) J Catal 276:76CrossRefGoogle Scholar
  22. 22.
    Zhu WM, Zhang QH, Wang Y (2008) J Phys Chem C 112:7731CrossRefGoogle Scholar
  23. 23.
    Wang Y, Chu H, Zhu WM, Zhang QH (2008) Catal Today 131:496CrossRefGoogle Scholar
  24. 24.
    Miller A, Zohour B, Seubsai A, Noon D, Senkan S (2013) Ind Eng Chem Res 52:9551CrossRefGoogle Scholar
  25. 25.
    Seubsai A, Kahn M, Senkan S (2011) ChemCatChem 3:174CrossRefGoogle Scholar
  26. 26.
    Chukeaw T, Seubsai A, Phon-in P, Charoen K, Witoon T, Donphai W, Parpainainar P, Chareonpanich M, Zohour B, Noon D, Senkan S (2016) RSC Adv 6:56116CrossRefGoogle Scholar
  27. 27.
    Seubsai A, Phon-in P, Chukeaw T, Uppala C, Prapainainar P, Chareonpanich M, Zohour B, Noon D, Senkan S (2017) Ind Eng Chem Res 56:100CrossRefGoogle Scholar
  28. 28.
    Phon-In P, Seubsai A, Chukeaw T, Charoen K, Donphai W, Prapainainar P, Chareonpanich M, Zohour B, Noon D, Senkan S (2016) Catal Commun 86:143CrossRefGoogle Scholar
  29. 29.
    Seubsai A, Zohour B, Noon D, Senkan S (2014) ChemCatChem 6:1215Google Scholar
  30. 30.
    Long WJ, Zhai QG, He JL, Zhang QH, Deng WP, Wang Y (2012) ChemPlusChem 77:27CrossRefGoogle Scholar
  31. 31.
    Seubsai A, Senkan S (2011) ChemCatChem 3:1751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Anusorn Seubsai
    • 1
    • 2
    • 3
    • 4
  • Chalinee Uppala
    • 1
    • 2
  • Palida Tiencharoenwong
    • 1
  • Thanaphat Chukeaw
    • 1
    • 2
  • Metta Chareonpanich
    • 1
    • 2
    • 3
    • 5
  • Bahman Zohour
    • 6
  • Daniel Noon
    • 6
  • Selim Senkan
    • 6
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKasetsart UniversityBangkokThailand
  2. 2.Center of Excellence on Petrochemical and Materials TechnologyKasetsart UniversityBangkokThailand
  3. 3.Center for Advanced Studies in Industrial Technology and Faculty of EngineeringKasetsart UniversityBangkokThailand
  4. 4.NANOTEC Center for Nanoscale Materials Design for Green NanotechnologyKasetsart UniversityBangkokThailand
  5. 5.Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural IndustriesKasetsart UniversityBangkokThailand
  6. 6.Department of Chemical and Biomolecular EngineeringUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations