Catalysis Letters

, Volume 148, Issue 2, pp 512–522 | Cite as

Synthesis of Co/Al2O3 Catalysts and Their Application in Heptane Steam Reforming

  • Elizaveta A. Dorofeeva
  • Arkady Yu. Postnov
  • Elena A. Pavlova
  • Evgeniy A. Vlasov
  • Markus Peurla
  • Päivi Mäki-Arvela
  • Dmitry Yu. Murzin


Synthesis of multi-component cobalt based catalysts with different metal precursors and thermal treatment was performed. A special emphasis was put on promotion with ceria. Catalysts, which were synthesized from thermally pre-activated CoCO3·mCo(OH)2·nH2O as a precursor and thereafter underwent reduction in flowing hydrogen, have a clear tendency for decomposition of mixed aluminum–cobalt containing complexes, inevitably formed during thermal treatment. The catalysts were tested in steam reforming of hydrocarbons. The size of metal particles in reduced catalysts was determined by TEM and related to catalytic activity.

Graphical Abstract


Cobalt catalysts Catalyst preparation Heptane steam reforming 



Research work is performed within a grant of the Government of the Russian Federation for the state support of the scientific researchers conducted under the leadership of the leading scientists.

Supplementary material

10562_2017_2256_MOESM1_ESM.docx (698 kb)
Supplementary material 1 (DOCX 698 KB)


  1. 1.
    Armor JN (1999) The multiple roles for catalysis in the production of H2. Appl Catal A 176:159–176CrossRefGoogle Scholar
  2. 2.
    Yoon S, Kang I, Bae J (2008) Effects of ethylene on carbon formation in diesel authothermal reforming. Int J Hydrog Energy 33:4780–4788CrossRefGoogle Scholar
  3. 3.
    Idriss H (2004) Ethanol reactions over noble metal/cerium oxide catalysts. Platin Met Rev 48(3):105–115CrossRefGoogle Scholar
  4. 4.
    Shabbir A, Sheldon HDL, Magali SF (2015) Catalytic steam reforming of biogas effects of feed composition and operating conditions. Int J Hydrog Energy 40:1005–1015CrossRefGoogle Scholar
  5. 5.
    Fauteux-Lefebvre C, Abatzoglou N, Braidy N, Achouri IE (2011) Diesel steam reforming with a nickel-alumina spinel catalyst for solid oxide fuel cell application. J Power Sources 196:7673–7680Google Scholar
  6. 6.
    Chen W, Zhao GF, Xue QS, Chen L, Lu Y (2013) High carbon resistance Ni/CeAlO3-Al2O3 catalyst for CH4/CO2 reforming., Appl Catal B 136–137:260–268CrossRefGoogle Scholar
  7. 7.
    Murzin DY (2017) Chemical reaction technology. De Gryuter, BerlinGoogle Scholar
  8. 8.
    Iqbal S, Davis TE, Hayward JS, Morgan DJ, Karim K, Bartley JK, Taylor SH, Hutchings GJ (2016) Fischer-Tropsch synthesis using promoted cobalt-based catalysts. Catal Today 272:74–79CrossRefGoogle Scholar
  9. 9.
    Brabant C, Khodakov A, Griboval-Constant A (2016) Promotion of lanthanum-supported cobalt-based catalysts for the Fischer-Tropsch reaction. CR Chimie 20:40–46CrossRefGoogle Scholar
  10. 10.
    Azizi HR, Mirzaei AA, Kaykhaii M, Mansouri M (2014) Fischer-Tropsch synthesis: studies effect of reduction variables on the performance of Fe–Ni–Co catalyst. J Nat Gas Sci Eng 18:484–491CrossRefGoogle Scholar
  11. 11.
    Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Fischer-Tropsch synthesis: temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl Catal A 333:177–191CrossRefGoogle Scholar
  12. 12.
    Shimura K, Miyazawa T, Hanaoka T, Hirata S (2014) Preparation of Co/Al2O3 catalyst for F-T synthesis: combination of impregnation method and homogeneous precipitation method. Appl Catal A 475:1–9CrossRefGoogle Scholar
  13. 13.
    Senecal P, Jacques SDM, Di Michael M, Kimber SAJ, Vamvakeros A, Odarchenko Y, Lezcano-Gonzalez I, Paterson J, Ferguson E, Beale AM (2017) Real-time scattering-contrast imaging of a supported cobalt-based catalyst body during activation and Fischer-Tropsch synthesis revealing spatial dependence of particle size and phase on catalytic properties. ACS Catal 7:2284–2293CrossRefGoogle Scholar
  14. 14.
    Girardon JS, Lermontov AS, Gengembre L, Chernavskii PA, Griboval-Constant A, Khodakov AY (2005) Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts. J Catal 230:339CrossRefGoogle Scholar
  15. 15.
    Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310CrossRefGoogle Scholar
  16. 16.
    Liang H, Raitano JM, Zhang L, Chan S-W (2009) Controlled synthesis of Co3O4 nanopolyhedrons and nanosheets at low temperature. Chem Comm 48:7569–7571CrossRefGoogle Scholar
  17. 17.
    Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281CrossRefGoogle Scholar
  18. 18.
    Rojanapipatkul S, Goodwin JG Jr, Praserthdam P, Jongsomjit B (2012) Effect of cobalt precursors on properties of Co/CoAl2O4 catalysts synthesized by solvothermal method. Eng J 16:5–14CrossRefGoogle Scholar
  19. 19.
    Song H, Mirkelamoglu B, Ozkan US (2010) Effect of cobalt precursor on the performance of ceria-supported cobalt catalysts for ethanol steam reforming. Appl Catal A 382:58–64CrossRefGoogle Scholar
  20. 20.
    Haga F, Nakajima T, Miya H, Mishima S (1997) Catalytic properties of supported cobalt catalysts for steam reforming of ethanol. Catal Lett 48:223–227CrossRefGoogle Scholar
  21. 21.
    Lin SS-Y, Kim DH, Ha SY (2009) Metallic phases of cobalt-based catalysts in ethanol steam reforming: the effect of cerium oxide. Appl Catal A 355:69–77CrossRefGoogle Scholar
  22. 22.
    Bao A, Li J, Zhang Y (2010) Effect of barium on reducibility and activity for cobalt-based Fischer-Tropsch synthesis catalysts. J Energy Chem 19:622–627Google Scholar
  23. 23.
    Abashar MEE (2016) Low temperature catalytic reforming of heptane to hydrogen and syngas. J Saudi Chem Soc 20:186–195CrossRefGoogle Scholar
  24. 24.
    Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Steam reforming of liquid hydrocarbons. Stud Surf Sci Catal 113:81–95CrossRefGoogle Scholar
  25. 25.
    Zhang L, Holt CMB, Luber EJ, Olsen BC, Wang H, Danaie M, Cui X, Tan X, Lui V, Kalisvaart WP, Mitlin D (2011) High rate electrochemical capacitors from three-dimensional arrays of vanadium nitride functionalized carbon nanotubes. J Phys Chem C 115:24381–24393CrossRefGoogle Scholar
  26. 26.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  27. 27.
    Taylor A, Floyd RW (1950) Precision measurements of lattice parameters of non-cubic crystals. Acta Crystal 3:285–289CrossRefGoogle Scholar
  28. 28.
    Petit C, Wang ZL, Pileni MP (2005) Seven-nanometer hexagonal close packed cobalt nanocrystals for high-temperature magnetic applications through a novel annealing process. J Phys Chem B 109:15309–15316CrossRefGoogle Scholar
  29. 29.
    Rozita Y, Brydson R, Scott AJ (2010) An investigation of commercial gamma-Al2O3 nanoparticles. J Phys 241:012096Google Scholar
  30. 30.
    Fleming S, Rohl A (2005) GDIS: a visualization program for molecular and periodic systems. Z Krist 220:580–584Google Scholar
  31. 31.
    Bouck RM, Anderson AM, Prasad C, Hagerman ME, Carroll MK (2016) Cobalt-alumina sol-gels: effects of heat treatment on structure and catalytic ability. J Non-Cryst Solids 453:94–102CrossRefGoogle Scholar
  32. 32.
    Bechara R, Balloy D, Dauphin J-Y, Grimblot J (1999) Influence of the characteristics of γ-aluminas on the dispersion and the reducibility of supported cobalt catalysts. Chem Mater 11:1703–1711CrossRefGoogle Scholar
  33. 33.
    Mansour SAA (1994) Spectrothermal studies on the decomposition course of cobalt oxysalts: Part II—cobalt nitrate hexahydrate. Mater Chem Phys 36:317–323CrossRefGoogle Scholar
  34. 34.
    VandeLoosdrecht J, Barradas S, Caricato EA, Ngwenya NG, Nkwanyana PS, Rawat MAS, Sigwebela BH, van Berge PJ, Visagie JL (2003) Calcination of co-based Fischer-Tropsch synthesis catalysts. Top Catal 26:121–127CrossRefGoogle Scholar
  35. 35.
    Inoue M, Kimura M, Inui T (2000) Alkoxyalumoxanes. Chem Mater 12:55–61CrossRefGoogle Scholar
  36. 36.
    Avramov LK (1977) Derivatographic study of CoOOH decomposition. Thermochim Acta 19:147–152CrossRefGoogle Scholar
  37. 37.
    Artamonova IV, Gorichev IG, Lainer YuA, Godunov EB, Kramer SM, Terekhova MV (2016) Methods for calculating the kinetic parameters of carbonate decomposition from thermal analysis data. Russ Metall 7:592–595CrossRefGoogle Scholar
  38. 38.
    Chourashiya MG, Pawar SH, Jadhav LD (2008) Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique. Appl Surf Sci 254:3431–3435CrossRefGoogle Scholar
  39. 39.
    Ummartyotin S, Sangngern S, Kaewvilai A, Koonsaeng N, Manuspiya H, Laobuthee A (2009) Cobalt aluminate (CoAl2O4) derived from Co-Al-TEA complex and its dielectric behaviors. J Sustain Energy Environ 1:31–37Google Scholar
  40. 40.
    Glaspell GP, Jagodzinski PW, Manivannan A (2004) Formation of cobalt nitrate hydrate, cobalt oxide, and cobalt nanoparticles using laser vaporization controlled condensation. J Phys Chem B 108:9604–9607CrossRefGoogle Scholar
  41. 41.
    Li DY, Lin YS, Li YC, Shieh DL, Lin JL (2007) Fabrication of pseudoboehmie and alumina: effects of water and 1-hexadecyl-2,3-dimethyl-imidazolium chloride. Microporous Mesoporous Mater 8:276–282Google Scholar
  42. 42.
    Lian J, Ma J, Duan X, Kim T, Li H, Zheng W (2010) One-step ionothermal synthesis of γ­Al2O3 mesoporous nanoflakes at low temperature. Chem Commun 46:2650–2652CrossRefGoogle Scholar
  43. 43.
    De Souza Santos P, Souza Santos SP, Toledo (2000) Standard transition aluminas: electron microscopy studies. Mat Res 3:104–114CrossRefGoogle Scholar
  44. 44.
    De Souza Santos P (1992) Pseudomorphic formation of aluminas from fibrillar pseudoboehmite. Mat Lett 13:175–179CrossRefGoogle Scholar
  45. 45.
    Christensen KO, Chen D, Lødeng R, Holmen A (2006) Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Appl Catal A 314:9–22CrossRefGoogle Scholar
  46. 46.
    Luo JY, Meng M, Li X, Li XG, Zha YQ, Hu TD, Xie YN, Zhang J (2008) Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J Catal 254:310–324CrossRefGoogle Scholar
  47. 47.
    Murzin D (2013) Engineering catalysis. DeGruyter, BerlinCrossRefGoogle Scholar
  48. 48.
    Norval GW, Phillips MJ (1990) Application of equilibrium analysis to a Fischer-Tropsch product. J Catal 126:87–91CrossRefGoogle Scholar
  49. 49.
    Wang CB, Tang CW, Tsai HC, Chien SH (2006) Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catal Lett 107:223–230CrossRefGoogle Scholar
  50. 50.
    Vosoughi V, Badoga S, Dalai AK, Abatzoglou N (2016) Effect of pretreatment on physicochemical properties and performance of multiwalled carbon nanotube supported cobalt catalyst for Fischer-Tropsch synthesis. Ind Eng Chem Res 55(21):6049–6059CrossRefGoogle Scholar
  51. 51.
    Arnoldy P, Moulijin JA (1985) Temperature-programmed reduction of CoO/Al2O3 catalysts. J Catal 93:38–54CrossRefGoogle Scholar
  52. 52.
    Fischer N, Minnermann M, Baeumer M, van Steen E, Claeys M (2012) Metal support interactions in Co3O4/Al2O3 catalysts prepared from w/o microemulsions. Catal Lett 142:830–837CrossRefGoogle Scholar
  53. 53.
    Liotta LF, Ousmane M, Di.Carlo G, Pantaleo G, Deganello G, Boreave A, Giroir-Fendler A. (2009) Catalytic removal of toluene over Co3O4-CeO2 catalysts: comparison with Pt/Al2O3. Catal Lett 127:270–276CrossRefGoogle Scholar
  54. 54.
    Melo F, Morlanes N (2008) Study of the composition of ternary mixed oxides: use of these materials on a hydrogen production process. Catal Today 133–135:374–382CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Elizaveta A. Dorofeeva
    • 1
  • Arkady Yu. Postnov
    • 1
  • Elena A. Pavlova
    • 1
  • Evgeniy A. Vlasov
    • 1
  • Markus Peurla
    • 2
  • Päivi Mäki-Arvela
    • 3
  • Dmitry Yu. Murzin
    • 3
  1. 1.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  2. 2.University of TurkuTurkuFinland
  3. 3.Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry CentreAbo Akademi UniversityTurkuFinland

Personalised recommendations