Advertisement

Catalysis Letters

, Volume 148, Issue 5, pp 1416–1422 | Cite as

Catalytic Decomposition of Hydrogen-Iodide Over Nanocrystalline Ceria Promoted by Transition Metal Oxides for Hydrogen Production in Sulfur–Iodine Thermo-Chemical Cycle

  • Amit Singhania
Article

Abstract

In this study, CeO2, and CeO2-M (M=Fe, Co, and Ni) catalysts were prepared by sol–gel method for catalytic decomposition of hydrogen-iodide in sulfur–iodine (SI) cycle. These catalysts sample were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM), and Raman spectroscopy. The powder XRD, and TEM results gave 4–5 nm average size particles of CeO2–Ni-300 sample. BET and Raman results showed a high specific surface area, and large number of oxygen vacancy in the Ni sample. The hydrogen-iodide decomposition experiments were carried out in the temperature range of 400–550 °C in a quartz-tube vertical fixed-bed reactor with 55 wt% HI feed over prepared CeO2-M catalysts using nitrogen as a carrier gas at atmospheric pressure. The experimental hydrogen-iodide decomposition results showed high catalytic activity of Ni sample as compared to Co and Fe samples. They followed the catalytic order: CeO2–Ni-300 > CeO2–Co-300 > CeO2–Fe-300 > CeO2-300. The effect of calcination temperatures (300, 500, and 700 °C) of CeO2–Ni sample (during sol–gel method) on hydrogen-iodide conversion was also studied and showed that the following catalytic order: CeO2–Ni-300 > CeO2–Ni-500 > CeO2–Ni-700. With increase in calcination temperatures the conversion decreased. CeO2–Ni-300 sample also gave a reasonable stability for time-on-stream of about 5 h. So, based on these results, CeO2–Ni-300 is an attractive candidate which has potential for producing large quantity of hydrogen in SI cycle.

Graphical Abstract

Keywords

Hydrogen-iodide decomposition Ceria Transition metal oxides Catalytic activity Hydrogen production Sulfur-iodine cycle 

Notes

Acknowledgements

The author wants to thank central facility of IIT Delhi, New Delhi, India, for granting access to characterization instruments. This work was supported by ONGC Energy Centre Trust [RP02148], New Delhi, India.

Compliance with Ethical Standards

Conflict of interest

The author declares there is no conflict of interest.

References

  1. 1.
    Moka S, Pande M, Rani M, Gakhar R, Sharma M, Rani J, Bhaskarwar AN (2014) Renew Sustain Energy Rev 32:697CrossRefGoogle Scholar
  2. 2.
    Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2308/DEL/2014Google Scholar
  3. 3.
    Singhania A, Bhaskarwar AN, Kale DM, Thomas NJ, Prabhu BN, Bhardwaj A, Bhargava B, Parvatalu D, Banerjee S (2014) IN Patent 2259/DEL/2014Google Scholar
  4. 4.
    Roth M, Knoche KF (1989) Int J Hydrog Energy 14:545CrossRefGoogle Scholar
  5. 5.
    Kubo S, Nakajima H, Kasahara S, Higashi S, Masaki T, Abe H, Onuki K (2014) Nucl Eng Des 233:347CrossRefGoogle Scholar
  6. 6.
    Goldstein S, Borgard JM, Vitart X (2005) Int J Hydrog Energy 30:619CrossRefGoogle Scholar
  7. 7.
    Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:264CrossRefGoogle Scholar
  8. 8.
    Singhania A, Gupta SM (2017) Beilstein J Nanotechnol 8:1546CrossRefGoogle Scholar
  9. 9.
    Arrive C, Delahaye T, Joubert O, Gauthier G (2013) J Power Sources 223:341CrossRefGoogle Scholar
  10. 10.
    Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D, Banerjee S (2016) Int J Hydrog Energy 41:10538CrossRefGoogle Scholar
  11. 11.
    Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D, Banerjee S (2017) Catal Commun 93:5CrossRefGoogle Scholar
  12. 12.
    Wang ZC, Wang LJ, Zhang P, Chen SZ, Xu JM, Chen J (2009) Chin Chem Lett 20:102CrossRefGoogle Scholar
  13. 13.
    Singhania A, Bhaskarwar AN (2017) Catal Rev 1Google Scholar
  14. 14.
    Singhania A, Krishnan VV, Bhaskarwar AN, Bhargava B, Parvatalu D (2017) Int J Hydrog Energy 1Google Scholar
  15. 15.
    Tyagi D, Varma S, Bharadwaj SR (2015) Int J Energy Res 39:484CrossRefGoogle Scholar
  16. 16.
    O’Keefe DR, Norman JH, Williamson DG (1980) Catal Rev 22:325CrossRefGoogle Scholar
  17. 17.
  18. 18.
    Wang L, Bai S, Wang Z, Zhao Y, Yuan X, Zhang P, Chen S, Xu J, Meng X (2012) Int J Hydrog Energy 37:10020CrossRefGoogle Scholar
  19. 19.
    Wang L, Li D, Zhang P, Chen S, Xu J (2012) Int J Hydrog Energy 37:6415CrossRefGoogle Scholar
  20. 20.
    Wang L, Han Q, Li D, Wang Z, Chen J, Chen S, Zhang P, Liu B, Wen M, Xu J (2013) Int J Hydrog Energy 38:109CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Wang Z, Zhou J, Cen K (2009) Int J Hydrog Energy 34:1688CrossRefGoogle Scholar
  22. 22.
    Stefanik TS, Tuller HL (2001) J Eur Ceram Soc 21:1967CrossRefGoogle Scholar
  23. 23.
    Yao HC, Yao YFY J Catal 86:254Google Scholar
  24. 24.
    Caputo F, De Nicola M, Sienkiewicz A, Giovanetti A, Bejarano I, Licoccia S, Traversa E, Ghibelli L (2015) Nanoscale 7:15643CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Wang Z, Zhou J, Liu J, Cen K (2008) Int J Hydrog Energy 33:602CrossRefGoogle Scholar
  26. 26.
    Chen Y, Wang Z, Zhang Y, Zhou Z, Cen K (2010) Int J Hydrog Energy 35:445CrossRefGoogle Scholar
  27. 27.
    Teng F, Xu P, Tian Z, Xiong G, Xu Y, Xu Z, Lin L (2015) Green Chem 7:493CrossRefGoogle Scholar
  28. 28.
    Masson S, Holliman P, Kalaji M, Kluson P (2009) J Mater Chem 19:3517CrossRefGoogle Scholar
  29. 29.
    Skaf M, Aouad S, Hany S, Cousin R, Abi-Aad E, Aboukais A (2015) J Catal 320:137CrossRefGoogle Scholar
  30. 30.
    Wang H, Zhu JJ, Zhu JM, Liao XH, Xu S, Ding T, Chen HY (2002) Phys Chem Chem Phys 4:3794CrossRefGoogle Scholar
  31. 31.
    Santos MLD, Lima RC, Riccardi CS, Tranquilin RL, Bueno PR, Varela JR, Longo E (2008) Mater Lett 62:4509CrossRefGoogle Scholar
  32. 32.
    Lin J, Li L, Huang Y, Zhang W, Wang X, Wang A, Zhang T (2011) J Phys Chem C 115:16509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemical EngineeringIndian Institute of Technology, DelhiNew DelhiIndia

Personalised recommendations