Advertisement

Catalysis Letters

, Volume 148, Issue 2, pp 691–698 | Cite as

Direct Conversion of Syngas to Ethanol over Rh–Fe/γ-Al2O3 Catalyst: Promotion Effect of Li

  • Yan Chen
  • Haitao Zhang
  • Hongfang Ma
  • Weixin Qian
  • Fangyu Jin
  • Weiyong Ying
Article
  • 297 Downloads

Abstract

The influence of Li loading on the activity and selectivity of Rh–Fe/γ-Al2O3 catalysts for the synthesis of ethanol from syngas was explored. The catalysts were characterized by means of XRD, N2 adsorption, TPR, XPS, CO-TPD, and DRIFTS. Introduction of Li into Rh–Fe catalyst inhibited the Rh reducibility, which could stabilize oxidized Rh species. This led to the significant increase of Rh+/Rh0 ratio over reduced catalysts, and then Rh+ became the major Rh species on the surface of reduced Li promoted catalyst. The enhanced Rh+ content improved the generation and stabilization of gem-dicarbonyls Rh+(CO)2 species on Rh+ sites, which was indicated by CO adsorption behavior. It can be concluded that the addition of Li facilitated CO insertion ability and simultaneously suppressed CO dissociation ability. Lower hydrocarbons selectivity and higher ethanol selectivity were observed on Li modified Rh–Fe catalysts. The catalyst with 0.5 wt% Li exhibited the highest selectivity being 30.2% to ethanol.

Graphical Abstract

Keywords

Ethanol CO hydrogenation Li promoter Rh–Fe/γ-Al2O3 

Notes

Acknowledgements

This work is financially supported by the Fundemental Research Funds for the Central Universities (No. 222201717013).

References

  1. 1.
    Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514CrossRefGoogle Scholar
  2. 2.
    Gao J, Mo X, Chien AC-Y, Torres W, Goodwin JG (2009) J Catal 262:119CrossRefGoogle Scholar
  3. 3.
    Haider MA, Gogate MR, Davis RJ (2009) J Catal 261:9CrossRefGoogle Scholar
  4. 4.
    Burch R, Hayes MJ (1997) J Catal 165:249CrossRefGoogle Scholar
  5. 5.
    Burch R, Petch MI (1992) Appl Catal A 88:39CrossRefGoogle Scholar
  6. 6.
    Ojeda M, Granados ML, Rojas S, Terreros P, GarcíA-GarcíA FJ, Fierro JLG (2004) Appl Catal A 261:47CrossRefGoogle Scholar
  7. 7.
    Han L, Mao D, Yu J, Guo Q, Lu G (2013) Appl Catal A 454:81CrossRefGoogle Scholar
  8. 8.
    Liu Y, Murata K, Inaba M, Takahara I, Okabe K (2011) Catal Today 164:308CrossRefGoogle Scholar
  9. 9.
    Chen G, Guo C-Y, Zhang X, Huang Z, Yuan G (2011) Fuel Process Technol 92:456CrossRefGoogle Scholar
  10. 10.
    Chuang SSC, Stevens RW, Khatri R (2005) Top Catal 32:225CrossRefGoogle Scholar
  11. 11.
    Hindermann JP, Hutchings GJ, Kiennemann A (1993) Catal Rev 35:1CrossRefGoogle Scholar
  12. 12.
    Chuang SC, Goodwin JG, Wender I (1985) J Catal 95:435CrossRefGoogle Scholar
  13. 13.
    Egbebi A, Schwartz V, Overbury SH, Spivey JJ (2010) Catal Today 149:91CrossRefGoogle Scholar
  14. 14.
    Schwartz V, Campos A, Egbebi A, Spivey JJ, Overbury SH (2011) ACS Catal 1:1298CrossRefGoogle Scholar
  15. 15.
    Luo HY, Zhang W, Zhou HW, Huang SY, Lin PZ, Ding YJ, Lin LW (2001) Appl Catal A 214:161CrossRefGoogle Scholar
  16. 16.
    Liu W, Wang S, Wang S (2016) Appl Catal A 510:227CrossRefGoogle Scholar
  17. 17.
    Yu J, Mao D, Ding D, Guo X, Lu G (2016) J Mol Catal A 423:151CrossRefGoogle Scholar
  18. 18.
    Ichikawa M, Fukushima T (1985) J Phys Chem 89:1564CrossRefGoogle Scholar
  19. 19.
    Mo X, Gao J, Umnajkaseam N, Goodwin JG (2009) J Catal 267:167CrossRefGoogle Scholar
  20. 20.
    Yu J, Mao D, Han L, Guo Q, Lu G (2013) J Ind Eng Chem 19:806CrossRefGoogle Scholar
  21. 21.
    Xu D, Zhang H, Ma H, Qian W, Ying W (2017) Catal Commun 98:90CrossRefGoogle Scholar
  22. 22.
    Chen W, Ding Y, Song X, Wang T, Luo H (2011) Appl Catal A 407:231CrossRefGoogle Scholar
  23. 23.
    Wang J, Zhang Q, Wang Y (2011) Catal Today 171:257CrossRefGoogle Scholar
  24. 24.
    Sina M, Thorpe R, Rangan S, Pereira N, Bartynski RA, Amatucci GG, Cosandey F (2015) J Phys Chem C 119:9762CrossRefGoogle Scholar
  25. 25.
    Tunçal T, ÇİFÇİ Dİ, Orhan U (2015) Appl Catal B 179:171CrossRefGoogle Scholar
  26. 26.
    Bonnotte T, Doherty RP, Sayag C, Krafft J-M, Méthivier C, Sicard M, Ser F, Thomas C (2014) J Phys Chem C 118:7386CrossRefGoogle Scholar
  27. 27.
    Force C, Román E, Guil JM, Sanz J (2007) Langmuir 23:4569CrossRefGoogle Scholar
  28. 28.
    Abdelsayed V, Shekhawat D, Poston JA, Spivey JJ (2013) Catal Today 207:65CrossRefGoogle Scholar
  29. 29.
    Yin H, Ding Y, Luo H, Zhu H, He D, Xiong J, Lin L (2003) Appl Catal A 243:155CrossRefGoogle Scholar
  30. 30.
    Prieto G, Concepción P, Martínez A, Mendoza E (2011) J Catal 280:274CrossRefGoogle Scholar
  31. 31.
    Li F, Ma H, Zhang H, Ying W, Fang D (2014) C R Chimie 17:1109CrossRefGoogle Scholar
  32. 32.
    Trautmann S, Baerns M (1994) J Catal 150:335CrossRefGoogle Scholar
  33. 33.
    Mojet BL, Miller JT, Ramaker DE, Koningsberger DC (1999) J Catal 186:373CrossRefGoogle Scholar
  34. 34.
    Mo X, Gao J, Goodwin JG Jr (2009) Catal Today 147:139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yan Chen
    • 1
  • Haitao Zhang
    • 1
  • Hongfang Ma
    • 1
  • Weixin Qian
    • 1
  • Fangyu Jin
    • 2
  • Weiyong Ying
    • 1
  1. 1.Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Yanzhou Coal Mining Yulin Energy and Chemical Co., LtdYulinChina

Personalised recommendations