Skip to main content
Log in

Study on the Liquid Phase Oxidation of p-Tert-butyltoluene Over Ni/NaY

  • Published:
Catalysis Letters Aims and scope Submit manuscript

An Author Correction to this article was published on 10 March 2018

This article has been updated

Abstract

Metal-modified molecular sieves (MNaY, M = Ni, Co, Cu) have been synthesized by the impregnation method, these catalysts were used for the study of liquid phase oxidation of p-tert-butyltoluene (PTBT) to synthesize p-tert-butylbenzaldehyde (PTBD) for the first time. The catalysts have been characterized by X-ray, XPS, SEM, BET, and TGA. The results show that the Ni/NaY exhibits suitable and stable catalytic activity. Recycle runs show that Ni/NaY was stable for at least five cycles. Under the optimized conditions of having a reaction time of 7 h, 6 mL of PTBT, 0.2 g of Ni/NaY, 0.1 g of N-hydroxyphthalimide (NHPI), 18 mL of acetonitrile, a reaction temperature of 70 °C, and a rotating speed 200 r/min, the conversion of PTBT reached 29.3–30.6% with a PTBD selectivity of 77.2%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

  • 10 March 2018

    In the original version of this article, the corresponding author information was incorrect. This has been corrected with this erratum. The correct corresponding author is Dr. Jiang-Quan Ma.

References

  1. Yu WH, Zhou CH, Tong DS, Xu TN (2012) J Mol Catal A 365:194–202

    Article  CAS  Google Scholar 

  2. Li WY, Xu YH, Wang JQ, Zhai ZB, Yan ZY (2007) Chem Lett 119:327–331

    CAS  Google Scholar 

  3. Wang SJ, Gu Q, Chen XD, Zhao TQ, Zhao N (2010) Chem Rev 9:835–839

    Google Scholar 

  4. Yokoyama T, Yamagata N (2001) Appl Catal A 221:227–239

    Article  CAS  Google Scholar 

  5. Yang Y T, Xu H L, Shen W (1999) Chin J Catal 20:530–534

    CAS  Google Scholar 

  6. Amin AA, Beattie JK (2003) Org Process Res Dev 7:879–882

    Article  CAS  Google Scholar 

  7. Tripathi S, Singh SN, Yadav LDS (2016) RSC Adv 6:14547–14551

    Article  CAS  Google Scholar 

  8. Zhu YH, Zhu Y, Zong HY, Chen ZY, Ma CA (2015) J Electroanal Chem 751:105–110

    Article  CAS  Google Scholar 

  9. Bidyut BS, Irena E, Ronny N (2015) J Am Chem Soc 137:5916–5922

    Article  Google Scholar 

  10. Guo R, Qin YY, Qian LY, Chen JS, Wu XM (2017) Catal Commun 88:94–98

    Article  CAS  Google Scholar 

  11. Li JC, Zeng PH, Zhao L, Ren SY, Guo QX, Zhao HJ (2015) J Catal 329:441–448

    Article  CAS  Google Scholar 

  12. Bellat JP, Bezverkhyy I, Weber G, Royer S, Averlant R (2015) J Hazard Mater 300:711–717

    Article  CAS  Google Scholar 

  13. Zeng YB, Walker H, Zhu QZ (2016) J Hazard Mater 324:605–616

    Article  Google Scholar 

  14. Luo D, Gao MX, Mao LQ, Yin DL (2013) Appl Chem 30:1443–1448

    CAS  Google Scholar 

  15. Li MY, Fu TJ, Wang YC, Yan LF, Li Z (2016) J. Inorg Chem 32:1951–1958

    CAS  Google Scholar 

  16. Chen JZ, Li ZJ (2012) J Chem Eng Technol 28:358–363

    CAS  Google Scholar 

  17. Huang K, Zhou W Y, Chen Q (2015) J Fine Chem 32:59–63

    CAS  Google Scholar 

  18. Banu M, Sivasanker S, Sankaranarayanan TM, Venuvanalingam P (2011) J. Catal Commun 12:673–677

    Article  CAS  Google Scholar 

  19. Chu G, Huang W (1997) J Pet Technol 26:813–816

    CAS  Google Scholar 

  20. Prieto P, Nistor V, Nouneh K, Oyama M, Diaz R (2012) J. Appl Surf Sci 258:8807–8813

    Article  CAS  Google Scholar 

  21. Singhal RK, Samariya A, Kumar S, Xing YT, Jain DC, Dolia SN (2013) J Appl Phys 114:129902

    Article  Google Scholar 

  22. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) J. Appl Surf Sci 255:2730–2734

    Article  CAS  Google Scholar 

  23. De Jong KP, Zecevic J, Friedrich H, Bulut M, Kenmogne R (2010) J Angew Chem Int Ed 122:10272–10276

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Industry Supporting Project of Zhenjiang of Jiangsu Province (GY2014037); and Industry Supporting Project of Changzhou of Jiangsu Province (CE20140077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yin.

Additional information

(1)NaY molecular sieve: industrial products (Liaoning Haitai Technology Development Co., Ltd.); (2)cobalt acetate: AR (Shanghai Maike Lin Biochemical Technology Co., Ltd.); (3)nickel nitrate, copper nitrate: AR (MeiLan Industrial Shanghai Co., Ltd.); (4)P-tert-butyl toluene: industrial products (Jiangsu Lvyuan Fine Chemical Co., Ltd.); (5)N-hydroxy phthalimide (NHPI): 98% for research and development (Beijing Braunway Technology Co., Ltd.); (6)acetonitrile: AR (Shanghai Mai Ruier Chemical Technology Co., Ltd. Company).

A correction to this article is available online at https://doi.org/10.1007/s10562-018-2344-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Shen, TT., Ma, JQ. et al. Study on the Liquid Phase Oxidation of p-Tert-butyltoluene Over Ni/NaY. Catal Lett 147, 1214–1220 (2017). https://doi.org/10.1007/s10562-017-2018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2018-4

Keywords

Navigation