Catalysis Letters

, Volume 147, Issue 4, pp 1006–1018 | Cite as

The Initial Stages of NH3 and NO Adsorption On (Mo2O5)2+/HZSM-5 with Two Adjacent Unsaturated fiveFold Mo Sites in SCR Reaction: A Cluster DFT Study

  • Zhifeng Yan
  • Sheng Shi
  • Zhe Li
  • Zhijun Zuo
  • Sha Li
  • Xiaogang Chen


The density functional theory (DFT) has been employed to investigate the initial stages of NH3 and NO adsorption on both Lewis and Brønsted acid sites of (Mo2O5)2+/HZSM-5 by using cluster models. The calculated results reveal that NH3 can strongly adsorb on both Lewis and Brønsted acid sites in the form of coordinated NH3 and NH4 + and the corresponding adsorption energies are − 48.16 and − 37.28 kcal/mol, respectively. Compared with NH3, NO represents much poorer adsorption ability on both Lewis and Brønsted acid sites. Upon NH3 adsorption on Lewis acid site, its connected Mo site converts to sixfold coordination and octahedral structure while the other Mo site still remains fivefold coordination and tetrahedral structure and electronic structure. However, NH3 adsorption on Brønsted acid site leads to the decrease of stability and the increase of reactivity of the two fivefold coordinated Mo sites. Along the proposed reaction mechanisms, the results of NO adsorption on (Mo2O5)2+/HZSM-5 with adsorbed NH3 indicate that NO can be adsorbed on the second unsaturated fivefold Mo site for both Lewis and Brønsted acid sites and be activated, which weaken the interaction between adsorbed NH3 species and (Mo2O5)2+/HZSM-5.

Graphical Abstract


DFT (Mo2O5)2+/HZSM-5 Lewis acid site Brønsted acid site NH3 adsorption NO adsorption 



The authors thank reviewers for their valuable suggestions and the financial support from National Natural Science Foundation of China (No. 21073131), State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and Technology, Taiyuan University of Technology (No. MKX201301), the Key Technologies R&D Program of Shanxi Province of China (No. 20140313002-2) and Youth Foundation of Taiyuan University of Technology (No. 1205-04020202).


  1. 1.
    Busca G, Lietti L, Ramis G, Berti F (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18:1–36CrossRefGoogle Scholar
  2. 2.
    Centi G, Perathoner S (2007) Chap. 1 Introduction: state of the art in the development of catalytic processes for the selective catalytic reduction of NOx into N2, In: Granger P, Pârvulescu VI (eds) Stud. Surf. Sci. Catal, Elsevier, pp. 1–23Google Scholar
  3. 3.
    L. Lietti, I. Nova, G. Ramis, L. Dall’Acqua, G. Busca, E. Giamello, P. Forzatti, F. Bregani, Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal. 187 (1999) 419–435.CrossRefGoogle Scholar
  4. 4.
    Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A (1999) SCR of NO by NH3 over TiO2-supported V2O5–MoO3 catalysts: reactivity and redox behavior. Appl Catal B 22:63–77CrossRefGoogle Scholar
  5. 5.
    Mhamdi M, Ghorbel A, Delahay G (2009) Influence of the V + Mo/Al ratio on vanadium and molybdenum speciation and catalytic properties of V–Mo–ZSM-5 prepared by solid-state reaction. Catal Today 142:239–244CrossRefGoogle Scholar
  6. 6.
    Wang XP, Yu SS, Yang HL, Zhang SX (2007) Selective catalytic reduction of NO by C2H2 over MoO3/HZSM-5. Appl Catal B 71:246–253CrossRefGoogle Scholar
  7. 7.
    A.L.S.M. Salgado, Passos FB, Schmal M (2003) NO reduction by ethanol on Pd and Mo catalysts supported on HZSM-5. Catal Today 85:23–29CrossRefGoogle Scholar
  8. 8.
    Z. Li, W. Huang, K.-C. Xie (2005) Effect of Mo contents on properties of Mo/ZSM-5 zeolite catalyst for NOx reduction J Environ Sci. 17 103–105.Google Scholar
  9. 9.
    Z. Li, K.C. Xie, W. Huang, W. Reschetilowski(2005) Molybdenum loaded on HZSM-5: a catalyst for selective catalytic reduction of nitrogen oxides, Stud Surf Sci Catal. 158 1741–1748.CrossRefGoogle Scholar
  10. 10.
    Z. Li, W. Huang, K.C. Xie (2002) Selective catalytic reduction of NO over Mo/ZSM-5 catalyst. Chin J Catal 23 535–538.Google Scholar
  11. 11.
    Yu W, Zhu J, Qi L, Sun C, Gao F, Dong L, Chen Y (2011) Surface structure and catalytic properties of MoO3/CeO2 and CuO/MoO3/CeO2. J Colloid Interface Sci 364:435–442CrossRefGoogle Scholar
  12. 12.
    Peng Y, Qu R, Zhang X, Li J (2013) The relationship between structure and activity of MoO3-CeO2 catalysts for NO removal: influences of acidity and reducibility. Chem Commun 49:6215–6217CrossRefGoogle Scholar
  13. 13.
    Ding W, Li S, Meitzner GD, Iglesia E (2000) Methane conversion to aromatics on Mo/H-ZSM5: structure of molybdenum species in working catalysts. J Phys Chem B 105:506–513CrossRefGoogle Scholar
  14. 14.
    Borry RW, Kim YH, Huffsmith A, Reimer JA, Iglesia E (1999) Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for non oxidative methane conversion. J Phys Chem B 103:5787–5796CrossRefGoogle Scholar
  15. 15.
    W. Ding, G.D. Meitzner, E. Iglesia(2002) The effects of silanation of external acid sites on the structure and catalytic behavior of Mo/H–ZSM5. J Catal 206 14–22.CrossRefGoogle Scholar
  16. 16.
    W. Li, G.D. Meitzner, R.W. Borry Iii, E. Iglesia(2000) Raman and X-Ray Absorption studies of Mo species in Mo/H-ZSM5 catalysts for non-oxidative CH4 reactions. J. Catal 191 373–383.CrossRefGoogle Scholar
  17. 17.
    Savinelli RO, Scott SL (2010) Wavelet transform EXAFS analysis of mono- and dimolybdate model compounds and a Mo/HZSM-5 dehydroaromatization catalyst. Phys Chem Chem Phys 12:5660–5667CrossRefGoogle Scholar
  18. 18.
    Y.-H. Kim, R.W. Borry Iii, E. Iglesia(2000) Genesis of methane activation sites in Mo-exchanged H–ZSM-5 catalysts. Micropor Mesopor Mater 35–36 495–509.CrossRefGoogle Scholar
  19. 19.
    B. Li, S. Li, N. Li, H. Chen, W. Zhang, X. Bao, B. Lin(2006) Structure and acidity of Mo/ZSM-5 synthesized by solid state reaction for methane dehydrogenation and aromatization, Micropor Mesopor Mater 88 244–253.CrossRefGoogle Scholar
  20. 20.
    Z.R. Ismagilov, E.V. Matus, L.T. Tsikoza.(2008) Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ Sci 1 526–541.CrossRefGoogle Scholar
  21. 21.
    Ma D, Zhu Q, Wu Z, Zhou D, Shu Y, Xin Q, Xu Y, Bao X (2005) The synergic effect between Mo species and acid sites in Mo/HMCM-22 catalysts for methane aromatization. Phys Chem Chem Phys 7:3102–3109CrossRefGoogle Scholar
  22. 22.
    Ma D, Han X, Zhou D, Yan Z, Fu R, Xu Y, Bao X, Hu H, S.C.F. Au-Yeung (2002) Towards guest-zeolite interactions: an NMR spectroscopic approach. Chem Eur J 8:4557–4561CrossRefGoogle Scholar
  23. 23.
    H. Minming, R.F. Howe, Characterization of MoY zeolites prepared by aqueous ion exchange. J Catal 108 (1987) 283–293.CrossRefGoogle Scholar
  24. 24.
    Zhou D, Ma D, Liu X, Bao X (2001) Study with density functional theory method on methane dehydro-aromatization over Mo/HZSM-5 catalysts I: optimization of active Mo species bonded to ZSM-5 zeolite. J Chem Phys 114:9125–9129CrossRefGoogle Scholar
  25. 25.
    D. Ma, Y. Shu, X. Bao, Y. Xu(2000) Methane dehydro-aromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: EPR study of the Mo species on/in the HZSM-5 zeolite. J Catal 189 314–325.CrossRefGoogle Scholar
  26. 26.
    Xu Y, Liu S, Guo X, Wang L, Xie M (1994) Methane activation without using oxidants over Mo/HZSM-5 zeolite catalysts. Catal Lett 30:135–149CrossRefGoogle Scholar
  27. 27.
    L.A. Pine, P.J. Maher, W.A. Wachter(1984) Prediction of cracking catalyst behavior by a zeolite unit cell size model. J Catal 85 466–476.CrossRefGoogle Scholar
  28. 28.
    Zhou D, Ma D, Wang Y, Liu X, Bao X (2003) Study with density functional theory method on methane C–H bond activation on the MoO2/HZSM-5 active center. Chem Phys Lett 373:46–51CrossRefGoogle Scholar
  29. 29.
    Tessonnier J-P, Louis B, Rigolet S, Ledoux MJ, Pham-Huu C (2008) Methane dehydro-aromatization on Mo/ZSM-5: about the hidden role of Brønsted acid sites. Appl Catal A 336:79–88CrossRefGoogle Scholar
  30. 30.
    Tessonnier J-P, Louis B, Walspurger S, Sommer J, Ledoux M-J, Pham-Huu C (2006) Quantitative measurement of the Brönsted acid sites in solid acids: toward a single-site design of Mo-modified ZSM-5 zeolite. J Phys Chem B 110:10390–10395CrossRefGoogle Scholar
  31. 31.
    M.J. Rice, A.K. Chakraborty, A.T. Bell (1999)Al next nearest neighbor, ring occupation, and proximity statistics in ZSM-5. J Catal 186:222–227.CrossRefGoogle Scholar
  32. 32.
    Yan Z, Zuo Z, Li Z, Zhang J (2014) A cluster DFT study of NH3 and NO adsorption on the (MoO2)2+/HZSM-5 surface: Lewis versus Brønsted acid sites. Appl Surf Sci 321:339–347CrossRefGoogle Scholar
  33. 33.
    Calatayud M, Mguig B, Minot C (2004) Modeling catalytic reduction of NO by ammonia over V2O5, Surf. Sci Rep 55:169–236CrossRefGoogle Scholar
  34. 34.
    Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catalytic abatement of NOx: Chemical and mechanistic aspects. Catal Today 107–108:139–148CrossRefGoogle Scholar
  35. 35.
    H. Yao, Y. Chen, Z. Zhao, Y. Wei, Z. Liu, D. Zhai, B. Liu, C. Xu(2013) Periodic DFT study on mechanism of selective catalytic reduction of NO via NH3 and O2 over the V2O5 (001) surface: Competitive sites and pathways J. Catal 305:67–75.CrossRefGoogle Scholar
  36. 36.
    Soyer S, Uzun A, Senkan S, Onal I (2006) A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface. Catal Today 118:268–278CrossRefGoogle Scholar
  37. 37.
    Cao F, Su S, Xiang J, Sun L, Hu S, Zhao Q, Wang P, Lei S (2012) Density functional study of adsorption properties of NO and NH3 over CuO/γ-Al2O3 catalyst. Appl Surf Sci 261:659–664CrossRefGoogle Scholar
  38. 38.
    R.Q. Long, R.T. Yang(2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe-ZSM-5 catalyst. J. Catal 207:224–231.CrossRefGoogle Scholar
  39. 39.
    D. Fang, F. He, D. Li, J. Xie(2013) First principles and experimental study of NH3 adsorptions on MnOx surface. Appl Surf Sci 285:215–219.CrossRefGoogle Scholar
  40. 40.
    Lowenstein W (1954) The distribution of aluminium in the tetrahedra of silicates and aluminates. Am Mineral 39:92–96Google Scholar
  41. 41.
    Zhou D, Zhang Y, Zhu H, Ma D, Bao X (2007) The structure, stability, and reactivity of Mo-oxo species in H-ZSM5 Zeolites: density functional theory study. J Phys Chem C 111:2081–2091CrossRefGoogle Scholar
  42. 42.
    Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517CrossRefGoogle Scholar
  43. 43.
    Delley B (1996) Fast calculation of electrostatics in crystals and large molecules. J Phys Chem 100:6107–6110CrossRefGoogle Scholar
  44. 44.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  45. 45.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted abinitio pseudopotentials for the first row transition elements. J Chem Phys 86:866–872CrossRefGoogle Scholar
  46. 46.
    Bergner A, Dolg M, Küchle W, Stoll H, Preuß H (1993) Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol Phys 80:1431–1441CrossRefGoogle Scholar
  47. 47.
    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840CrossRefGoogle Scholar
  48. 48.
    Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846CrossRefGoogle Scholar
  49. 49.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338–2342CrossRefGoogle Scholar
  50. 50.
    Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence-bond theories. J Chem Phys 23:2343–2346CrossRefGoogle Scholar
  51. 51.
    Mayer I (1983) Charge, bond order and valence in the AB initio SCF theory. Chem Phys Lett 97:270–274CrossRefGoogle Scholar
  52. 52.
    I. Mayer, Bond orders and valences: role of d-orbitals for hypervalent sulphur. J Mol Struct THEOCHEM 149 (1987) 81–89.CrossRefGoogle Scholar
  53. 53.
    Tsumuraya T, Shishidou T, Oguchi T (2007) First-principles study on lithium and magnesium nitrogen hydrides for hydrogen storage. J Alloys Compd 446–447:323–327CrossRefGoogle Scholar
  54. 54.
    Lide DR (2000) CRC Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Schröder K.-P, Sauer J, Leslie M, Richard C, Catlow A (1992) Siting of AI and bridging hydroxyl groups in ZSM-5: a computer simulation study. Zeolites 12:20–23.CrossRefGoogle Scholar
  56. 56.
    Nachtigallova D, Nachtigall P, Sierka M, Sauer J (1999) Coordination and siting of Cu+ ions in ZSM-5: a combined quantum mechanics/interatomic potential function study. Phys Chem Chem Phys 1:2019–2026CrossRefGoogle Scholar
  57. 57.
    Sierka M, Sauer J (1997) Structure and reactivity of silica and zeolite catalysts by a combined quantum mechanics[ndash]shell-model potential approach based on DFT. Faraday Discuss 106:41–62CrossRefGoogle Scholar
  58. 58.
    Illas F, López N, García-Hernández M, de P.R. Moreira I (1998) Theoretical study of NH3 chemisorption on Pt(111). J Mol Struct THEOCHEM 458:93–98.CrossRefGoogle Scholar
  59. 59.
    García-Hernández M, López N, d.P.R. Moreira I, Paniagua JC, Illas F (1999) Ab initio cluster model approach to the chemisorption of NH3 on Pt(111). Surf Sci 430:18–28CrossRefGoogle Scholar
  60. 60.
    Diawara B, Joubert L, Costa D, Marcus P, Adamo C (2009) Ammonia on Ni(111) surface studied by first principles: bonding, multi layers structure and comparison with experimental IR and XPS data. Surf Sci 603:3025–3034CrossRefGoogle Scholar
  61. 61.
    Lanzani G, Laasonen K (2010) NH3 adsorption and dissociation on a nanosized iron cluster. Int J Hydrogen Energy 35:6571–6577CrossRefGoogle Scholar
  62. 62.
    Liu R, Shen W, Zhang J, Li M (2008) Adsorption and dissociation of ammonia on Au(111) surface: a density functional theory study. Appl Surf Sci 254:5706–5710CrossRefGoogle Scholar
  63. 63.
    Anstrom M, Topsøe N.Y, Dumesic J.A. (2003) Density functional theory studies of mechanistic aspects of the SCR reaction on vanadium oxide catalysts. J Catal 213:115–125.CrossRefGoogle Scholar
  64. 64.
    Cheng D, Lan J, Cao D, Wang W (2011) Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (110) surfaces: a comparative DFT study. Appl Catal B 106:510–519CrossRefGoogle Scholar
  65. 65.
    Hadjiivanov K (1998) FTIR study of CO and NH3 co-adsorption on TiO2 (rutile). Appl Surf Sci 135:331–338CrossRefGoogle Scholar
  66. 66.
    Papakondylis A, Sautet P (1996) Ab initio study of the structure of the α-MoO3 solid and study of the adsorption of H2O and CO molecules on its (100) surface. J Phys Chem 100:10681–10688CrossRefGoogle Scholar
  67. 67.
    Yin X, Han H, Gunji I, Endou A, Cheettu Ammal SS, Kubo M, Miyamoto A (1999) NH3 adsorption on the Brönsted and Lewis acid sites of V2O5(010): a periodic density functional study. J Phys Chem B 103:4701–4706CrossRefGoogle Scholar
  68. 68.
    Yao H, Chen Y, Wei Y, Zhao Z, Liu Z, Xu C (2012) A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites. Surf Sci 606:1739–1748CrossRefGoogle Scholar
  69. 69.
    Ramis G, Busca G, Bregani F, P. Forzatti* (1990) Fourier transform-infrared study of the adsorption and co adsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction. Appl Catal 64:259–278CrossRefGoogle Scholar
  70. 70.
    Pittman RM, Bell AT (1994) Raman investigations of NH3 adsorption on TiO2, Nb2O5, and Nb2O5/TiO2. Catal Lett 24:1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhifeng Yan
    • 1
  • Sheng Shi
    • 1
  • Zhe Li
    • 2
  • Zhijun Zuo
    • 3
  • Sha Li
    • 1
  • Xiaogang Chen
    • 1
    • 4
  1. 1.College of Textile EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  3. 3.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi ProvinceTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  4. 4.School of MaterialsUniversity of ManchesterManchesterUK

Personalised recommendations