Catalysis Letters

, Volume 147, Issue 2, pp 517–524 | Cite as

Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst

  • Xinkui Wang
  • Zhen Qiu
  • Qinggang Liu
  • Xiao Chen
  • Shengyang Tao
  • Chuan Shi
  • Min Pang
  • Changhai Liang


The catalytic hydrogenation transformation with gaseous hydrogen in liquid phase always refers to a harsh condition and over-hydrogenation, and it is highly desired to develop new methods with partial-hydrogenation at mild condition. Herein, a heterogeneous catalytic transfer partial-hydrogenation strategy with formic acid as hydrogen source was developed over the Schiff-base modified gold nano-catalysts. The Au/Schiff-SiO2 catalyst was successfully prepared by one pot aldimine condensation and NaBH4 reduction of a gold precursor. The characterization results indicated that the gold nanoparticles with an average size below 2 nm were highly dispersed over the Schiff-base modified silica support. Such Schiff-based gold nano-catalysts exhibits excellent activity and partial-hydrogenation selectivity, with a high yield (>99%) for phenylacetylene partial-hydrogenation and achieving a 75% chemoselectivity for imines at a relative low temperature and atmospheric pressure. More importantly, the excess of formic acid can be removed by the direct dissociation of formic acid over Au/Schiff-SiO2 catalyst with CO2 emission into atmosphere, which leads to a hydrogen source as clean as hydrogen gaseous, but with a much more high activity and selectivity under mild reaction process.

Graphical Abstract


Gold catalysis Formic acid Catalytic transfer hydrogenation Phenylacetylene partial-hydrogenation Imines 



This work was supported by the National Natural Science Foundation of China (21676045, 21176037, 21373037, 51273030 and 21403026), the Fundamental Research Funds for the Central Universities (DUT15LK29 and DUT16RC(4)03).


  1. 1.
    Hong Y, Hensley A, McEwen J-S, Wang Y (2016) Catal Lett 146:1621CrossRefGoogle Scholar
  2. 2.
    Jagadeesh RV, Surkus A-E, Junge H, Pohl M-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M (2013) Science 342:1073CrossRefGoogle Scholar
  3. 3.
    Piqueras CM, Puccia V, Vega DA, Volpe MA (2016) Appl Catal B 185:265CrossRefGoogle Scholar
  4. 4.
    Garg JA, Chakraborty S, Ben-David Y, Milstein D (2016) Chem Commun 52:5285CrossRefGoogle Scholar
  5. 5.
    Lozano-Martín MC, Castillejos E, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2015) Catal Today 249:117CrossRefGoogle Scholar
  6. 6.
    Wang X, Liu Q, Xiao Z, Chen X, Shi C, Tao S, Huang Y, Liang C (2014) RSC Adv 4:48254CrossRefGoogle Scholar
  7. 7.
    Brieger G, Nestrick TJ (1974) Chem Rev 74:567CrossRefGoogle Scholar
  8. 8.
    Gladiali S, Alberico E (2006) Chem Soc Rev 35:226CrossRefGoogle Scholar
  9. 9.
    Ikariya T, Blacker AJ (2007) Acc Chem Res 40:1300CrossRefGoogle Scholar
  10. 10.
    Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129CrossRefGoogle Scholar
  11. 11.
    Wang D, Astruc D (2015) Chem Rev 115:6621CrossRefGoogle Scholar
  12. 12.
    Bi QY, Du X L, Liu YM, Cao Y, He HY, Fan KN (2012) J Am Chem Soc 134:8926CrossRefGoogle Scholar
  13. 13.
    Fellay C, Dyson PJ, Laurenczy G (2008) Angew Chem 120:4030CrossRefGoogle Scholar
  14. 14.
    Jiang K, Xu K, Zou S, Cai W-B (2014) J Am Chem Soc 136:4861CrossRefGoogle Scholar
  15. 15.
    Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB (2013) Chem Commun 49:10028CrossRefGoogle Scholar
  16. 16.
    Yadav M, Akita T, Tsumori N, Xu Q (2012) J Mater Chem 22:12582CrossRefGoogle Scholar
  17. 17.
    Zhu Q-L, Tsumori N, Xu Q (2014) Chem Sci 5:195CrossRefGoogle Scholar
  18. 18.
    Zhu Q-L, Tsumori N, Xu Q (2015) J Am Chem Soc 137:11743CrossRefGoogle Scholar
  19. 19.
    Liu Q, Yang X, Huang Y, Xu S, Su X, Pan X, Xu J, Wang A, Liang C, Wang X, Zhang T (2015) Energy Environ Sci 8:3204CrossRefGoogle Scholar
  20. 20.
    Diao J, Liu H, Wang J, Feng Z, Chen T, Miao C, Yang W, Su DS (2015) Chem Commun 51:3423CrossRefGoogle Scholar
  21. 21.
    Hu H, Li T, Sun X, Zhang X, Zhang X, Zhong Z, Guo Y (2015) J Sep Sci 38:1916CrossRefGoogle Scholar
  22. 22.
    Pan H, He Z, Lin Q, Liu F, Li Z (2016) Chin J Chem Eng 24:468CrossRefGoogle Scholar
  23. 23.
    Wang K, Meng L-G, Zhang Q, Wang L (2016) Green Chem 18:2864CrossRefGoogle Scholar
  24. 24.
    Domínguez-Domínguez S, Berenguer-Murcia Á, Cazorla-Amorós D, Linares-Solano Á (2006) J Catal 243:74CrossRefGoogle Scholar
  25. 25.
    Semagina N, Renken A, Kiwi-Minsker L (2007) J Phys Chem C 111:13933CrossRefGoogle Scholar
  26. 26.
    Domínguez-Domínguez S, Berenguer-Murcia Á, Linares-Solano Á, Cazorla-Amorós D (2008) J Catal 257:87CrossRefGoogle Scholar
  27. 27.
    Ma X-Y, Chai Y-Y, Evans DG, Li D-Q, Feng J-T (2011) J Phys Chem C 115:8693CrossRefGoogle Scholar
  28. 28.
    Shao Z, Li C, Chen X, Pang M, Wang X, Liang C (2010) ChemCatChem 2:1555CrossRefGoogle Scholar
  29. 29.
    Hauwert P, Maestri G, Sprengers JW, Catellani M, Elsevier CJ (2008) Angew Chem Int Ed Engl 47:3223CrossRefGoogle Scholar
  30. 30.
    Li J, Wang C, Xue D, Wei Y, Xiao J (2013) Green Chem 15:2685CrossRefGoogle Scholar
  31. 31.
    Li S-S, Tao L, Wang F-Z-R, Liu Y-M, Cao Y (2016) Advan Syn Catal 358:1410CrossRefGoogle Scholar
  32. 32.
    McFarland JM, Francis MB (2005) J Am Chem Soc 127:13490CrossRefGoogle Scholar
  33. 33.
    Wagh YS, Asao N (2015) J Org Chem 80:847CrossRefGoogle Scholar
  34. 34.
    Wienhofer G, Westerhaus FA, Jagadeesh RV, Junge K, Junge H, Beller M (2012) Chem Commun 48:4827CrossRefGoogle Scholar
  35. 35.
    Gopalaiah K, Saini A (2016) Catal Lett 146:1648CrossRefGoogle Scholar
  36. 36.
    Pan SC, Zhou J, List B (2007) Angew Chem 119:618CrossRefGoogle Scholar
  37. 37.
    Tang W, Zhang X (2003) Chem Rev 103:3029CrossRefGoogle Scholar
  38. 38.
    Zani L, Bolm C (2006) Chem Commun 41:4263CrossRefGoogle Scholar
  39. 39.
    Zhang X, Corma A (2008) Angew Chem 120:4430CrossRefGoogle Scholar
  40. 40.
    Santos LL, Serna P, Corma A (2009) Chemistry 15:8196CrossRefGoogle Scholar
  41. 41.
    Zheng Y, Ma K, Li H, Li J, He J, Sun X, Li R, Ma J (2008) Catal Lett 128:465CrossRefGoogle Scholar
  42. 42.
    Huang J, Yu L, He L, Liu Y-M, Cao Y, Fan K-N (2011) Green Chem 13:2672CrossRefGoogle Scholar
  43. 43.
    Xiang Y, Meng Q, Li X, Wang J (2010) Chem Commun 46:5918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xinkui Wang
    • 1
  • Zhen Qiu
    • 1
  • Qinggang Liu
    • 1
  • Xiao Chen
    • 1
  • Shengyang Tao
    • 1
  • Chuan Shi
    • 1
  • Min Pang
    • 2
  • Changhai Liang
    • 1
  1. 1.State Key Laboratory of Fine Chemicals, School of ChemistryDalian University of TechnologyDalianChina
  2. 2.Institute of MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations