Skip to main content
Log in

Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic hydrogenation transformation with gaseous hydrogen in liquid phase always refers to a harsh condition and over-hydrogenation, and it is highly desired to develop new methods with partial-hydrogenation at mild condition. Herein, a heterogeneous catalytic transfer partial-hydrogenation strategy with formic acid as hydrogen source was developed over the Schiff-base modified gold nano-catalysts. The Au/Schiff-SiO2 catalyst was successfully prepared by one pot aldimine condensation and NaBH4 reduction of a gold precursor. The characterization results indicated that the gold nanoparticles with an average size below 2 nm were highly dispersed over the Schiff-base modified silica support. Such Schiff-based gold nano-catalysts exhibits excellent activity and partial-hydrogenation selectivity, with a high yield (>99%) for phenylacetylene partial-hydrogenation and achieving a 75% chemoselectivity for imines at a relative low temperature and atmospheric pressure. More importantly, the excess of formic acid can be removed by the direct dissociation of formic acid over Au/Schiff-SiO2 catalyst with CO2 emission into atmosphere, which leads to a hydrogen source as clean as hydrogen gaseous, but with a much more high activity and selectivity under mild reaction process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Hong Y, Hensley A, McEwen J-S, Wang Y (2016) Catal Lett 146:1621

    Article  CAS  Google Scholar 

  2. Jagadeesh RV, Surkus A-E, Junge H, Pohl M-M, Radnik J, Rabeah J, Huan H, Schünemann V, Brückner A, Beller M (2013) Science 342:1073

    Article  CAS  Google Scholar 

  3. Piqueras CM, Puccia V, Vega DA, Volpe MA (2016) Appl Catal B 185:265

    Article  CAS  Google Scholar 

  4. Garg JA, Chakraborty S, Ben-David Y, Milstein D (2016) Chem Commun 52:5285

    Article  CAS  Google Scholar 

  5. Lozano-Martín MC, Castillejos E, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A (2015) Catal Today 249:117

    Article  Google Scholar 

  6. Wang X, Liu Q, Xiao Z, Chen X, Shi C, Tao S, Huang Y, Liang C (2014) RSC Adv 4:48254

    Article  CAS  Google Scholar 

  7. Brieger G, Nestrick TJ (1974) Chem Rev 74:567

    Article  CAS  Google Scholar 

  8. Gladiali S, Alberico E (2006) Chem Soc Rev 35:226

    Article  CAS  Google Scholar 

  9. Ikariya T, Blacker AJ (2007) Acc Chem Res 40:1300

    Article  CAS  Google Scholar 

  10. Johnstone RAW, Wilby AH, Entwistle ID (1985) Chem Rev 85:129

    Article  CAS  Google Scholar 

  11. Wang D, Astruc D (2015) Chem Rev 115:6621

    Article  CAS  Google Scholar 

  12. Bi QY, Du X L, Liu YM, Cao Y, He HY, Fan KN (2012) J Am Chem Soc 134:8926

    Article  CAS  Google Scholar 

  13. Fellay C, Dyson PJ, Laurenczy G (2008) Angew Chem 120:4030

    Article  Google Scholar 

  14. Jiang K, Xu K, Zou S, Cai W-B (2014) J Am Chem Soc 136:4861

    Article  CAS  Google Scholar 

  15. Qin YL, Wang J, Meng FZ, Wang LM, Zhang XB (2013) Chem Commun 49:10028

    Article  CAS  Google Scholar 

  16. Yadav M, Akita T, Tsumori N, Xu Q (2012) J Mater Chem 22:12582

    Article  CAS  Google Scholar 

  17. Zhu Q-L, Tsumori N, Xu Q (2014) Chem Sci 5:195

    Article  CAS  Google Scholar 

  18. Zhu Q-L, Tsumori N, Xu Q (2015) J Am Chem Soc 137:11743

    Article  CAS  Google Scholar 

  19. Liu Q, Yang X, Huang Y, Xu S, Su X, Pan X, Xu J, Wang A, Liang C, Wang X, Zhang T (2015) Energy Environ Sci 8:3204

    Article  CAS  Google Scholar 

  20. Diao J, Liu H, Wang J, Feng Z, Chen T, Miao C, Yang W, Su DS (2015) Chem Commun 51:3423

    Article  CAS  Google Scholar 

  21. Hu H, Li T, Sun X, Zhang X, Zhang X, Zhong Z, Guo Y (2015) J Sep Sci 38:1916

    Article  CAS  Google Scholar 

  22. Pan H, He Z, Lin Q, Liu F, Li Z (2016) Chin J Chem Eng 24:468

    Article  CAS  Google Scholar 

  23. Wang K, Meng L-G, Zhang Q, Wang L (2016) Green Chem 18:2864

    Article  Google Scholar 

  24. Domínguez-Domínguez S, Berenguer-Murcia Á, Cazorla-Amorós D, Linares-Solano Á (2006) J Catal 243:74

    Article  Google Scholar 

  25. Semagina N, Renken A, Kiwi-Minsker L (2007) J Phys Chem C 111:13933

    Article  CAS  Google Scholar 

  26. Domínguez-Domínguez S, Berenguer-Murcia Á, Linares-Solano Á, Cazorla-Amorós D (2008) J Catal 257:87

    Article  Google Scholar 

  27. Ma X-Y, Chai Y-Y, Evans DG, Li D-Q, Feng J-T (2011) J Phys Chem C 115:8693

    Article  CAS  Google Scholar 

  28. Shao Z, Li C, Chen X, Pang M, Wang X, Liang C (2010) ChemCatChem 2:1555

    Article  CAS  Google Scholar 

  29. Hauwert P, Maestri G, Sprengers JW, Catellani M, Elsevier CJ (2008) Angew Chem Int Ed Engl 47:3223

    Article  CAS  Google Scholar 

  30. Li J, Wang C, Xue D, Wei Y, Xiao J (2013) Green Chem 15:2685

    Article  CAS  Google Scholar 

  31. Li S-S, Tao L, Wang F-Z-R, Liu Y-M, Cao Y (2016) Advan Syn Catal 358:1410

    Article  CAS  Google Scholar 

  32. McFarland JM, Francis MB (2005) J Am Chem Soc 127:13490

    Article  CAS  Google Scholar 

  33. Wagh YS, Asao N (2015) J Org Chem 80:847

    Article  CAS  Google Scholar 

  34. Wienhofer G, Westerhaus FA, Jagadeesh RV, Junge K, Junge H, Beller M (2012) Chem Commun 48:4827

    Article  Google Scholar 

  35. Gopalaiah K, Saini A (2016) Catal Lett 146:1648

    Article  CAS  Google Scholar 

  36. Pan SC, Zhou J, List B (2007) Angew Chem 119:618

    Article  Google Scholar 

  37. Tang W, Zhang X (2003) Chem Rev 103:3029

    Article  CAS  Google Scholar 

  38. Zani L, Bolm C (2006) Chem Commun 41:4263

    Article  Google Scholar 

  39. Zhang X, Corma A (2008) Angew Chem 120:4430

    Article  Google Scholar 

  40. Santos LL, Serna P, Corma A (2009) Chemistry 15:8196

    Article  CAS  Google Scholar 

  41. Zheng Y, Ma K, Li H, Li J, He J, Sun X, Li R, Ma J (2008) Catal Lett 128:465

    Article  Google Scholar 

  42. Huang J, Yu L, He L, Liu Y-M, Cao Y, Fan K-N (2011) Green Chem 13:2672

    Article  CAS  Google Scholar 

  43. Xiang Y, Meng Q, Li X, Wang J (2010) Chem Commun 46:5918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21676045, 21176037, 21373037, 51273030 and 21403026), the Fundamental Research Funds for the Central Universities (DUT15LK29 and DUT16RC(4)03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinkui Wang or Min Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qiu, Z., Liu, Q. et al. Heterogeneous Catalytic Transfer Partial-Hydrogenation with Formic Acid as Hydrogen Source Over the Schiff-Base Modified Gold Nano-Catalyst. Catal Lett 147, 517–524 (2017). https://doi.org/10.1007/s10562-016-1929-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1929-9

Keywords

Navigation