Catalysis Letters

, Volume 147, Issue 2, pp 483–490 | Cite as

An Effective Strategy to Prepare Pd–Ag/MgCO3@α-Al2O3 Catalyst for Selective Hydrogenation of Acetylene

  • Chunxia Che
  • Bingkai Wang
  • Changfu Shan
  • Hao Chen
  • Weisheng Liu
  • Yu Tang


A spherical Pd–Ag/MgCO3@α-Al2O3 catalyst with highly stable dispersion has been designed and synthesized by an effective in-situ synthetic approach for selective hydrogenation of acetylene. MgCO3 was synthesized in-situ on the surface of spherical α-Al2O3 to obtain MgCO3@α-Al2O3 support, followed by the introduction of Pd(NO3)2 and AgNO3. Importing MgCO3 structure offers larger specific surface area to realize uniform dispersion of active constituent Pd, moreover, the synthesized support exhibited the effects on modification of Pd electronic structure and the surface acidity of catalyst. With this Pd–Ag/MgCO3@α-Al2O3 catalyst (cat-48) at 70 °C (industrial reaction temperature), acetylene conversion, ethylene selectivity, MAPD conversion, propylene selectivity and n-butene formed can reach 89, 92, 28, 96% and 124 ppm, respectively. In addition, during 500 h long-term test, conversion and selective behaviors of Pd–Ag/MgCO3@α-Al2O3 catalyst can basically remain stable. All this catalytic efficiency parameters are superior to Pd–Ag@α-Al2O3 (most commonly used in industrial) and Pd–Ag/MgAl-LDH@α-Al2O3. We believe that the Pd–Ag/MgCO3@α-Al2O3 catalyst with high dispersion of Pd and synergistic effects could be a highly efficient industrial catalyst for selective hydrogenation of acetylene to ethylene.

Graphical Abstract


MgCO3@α-Al2O3 Acetylene Selective hydrogenation 



The research leading to these results has received funding from the National Natural Science Foundation of China (Projects 21471071, 21431002).

Supplementary material

10562_2016_1923_MOESM1_ESM.docx (836 kb)
Supplementary material 1 (DOCX 836 KB)


  1. 1.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320CrossRefGoogle Scholar
  2. 2.
    Huang W, McCormick J, Lobo R, Chen J (2007) J Catal 246:40CrossRefGoogle Scholar
  3. 3.
    Mei D, Neurock M, Smith CM (2009) J Catal 268:181CrossRefGoogle Scholar
  4. 4.
    Rahimpour MR, Dehghani O, Gholipour MR, Yancheshmeh MS, Haghighi SS, Shariati A (2012) Chem Eng J 198:491CrossRefGoogle Scholar
  5. 5.
    Ahchieva D, Peglow M, Heinrich S, Mörl L, Wolff T, Klose F (2005) Appl Catal A Gen 296:176CrossRefGoogle Scholar
  6. 6.
    Chatzidoukas C, Perkins JD, Pistikopoulos EN, Kiparissides C (2003) Chem Eng Sci 58:3643CrossRefGoogle Scholar
  7. 7.
    Kim SK, Kim C, Lee JH, Kim J, Lee H, Moon SH (2009) J Catal 306:146CrossRefGoogle Scholar
  8. 8.
    Shi C, Hoisington R, Jang BWL (2007) Ind Eng Chem Res 46:4390CrossRefGoogle Scholar
  9. 9.
    Ahn IY, Lee JH, Kim SK, Moon SH (2009) Appl Catal A Gen 360:38CrossRefGoogle Scholar
  10. 10.
    Yang B, Burch R, Hardacre C, Headdock G, Hu P (2013) J Catal 305:264CrossRefGoogle Scholar
  11. 11.
    Teschner D, Borsodi J, Wootsch A, Révay Z, Hävecker M, Knop-Gericke A, Jackson SD, Schlögl R (2008) Science 320:86CrossRefGoogle Scholar
  12. 12.
    Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D (2013) Chem Comm 49:8350CrossRefGoogle Scholar
  13. 13.
    Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2002) J Catal 208:310CrossRefGoogle Scholar
  14. 14.
    Kim E, Shin EW, Bark CW, Chang I, Yoon WJ, Kim W-J (2014) Appl Catal A Gen 471:80CrossRefGoogle Scholar
  15. 15.
    Kim SK, Lee JH, Ahn IY, Kim W-J, Moon SH (2011) Appl Catal A Gen 401:12CrossRefGoogle Scholar
  16. 16.
    Lee JH, Kim SK, Ahn IY, Kim W-J, Moon SH (2011) Catal Comm 12:1251CrossRefGoogle Scholar
  17. 17.
    Kim W-J, Ahn IY, Lee J-H, Moon SH (2012) Catal Comm 24:52CrossRefGoogle Scholar
  18. 18.
    Lesiak M, Binczarski M, Karski S, Maniukiewicz W, Rogowski J, Szubiakiewicz E, Berlowska J, Dziugan P, Witońska I (2014) J Mol Catal A Chem 395:337CrossRefGoogle Scholar
  19. 19.
    Lu H, Xu B, Wang X, Hu Z, Fan Y (2014) Catal Lett 144:2198CrossRefGoogle Scholar
  20. 20.
    Yan X, Wheeler J, Jang B, Lin W-Y, Zhao B (2014) Appl Catal A Gen 487:36CrossRefGoogle Scholar
  21. 21.
    Fan G, Li F, Evans DG, Duan X (2014) Chem Soc Rev 43:7040CrossRefGoogle Scholar
  22. 22.
    Bakala P, Briot E, Millot Y, Piquemal J, Bregeault J (2008) J Catal 258:61CrossRefGoogle Scholar
  23. 23.
    Molnár Á, Sárkány A, Varga M (2001) J Mol Catal A Chem 173:185CrossRefGoogle Scholar
  24. 24.
    Liu G, St. Clair TP, Goodman DW (1999) J Phys Chem B 103:8578CrossRefGoogle Scholar
  25. 25.
    Baron M, Bondarchuk O, Stacchiola D, Shaikhutdinov S, Freund H-J (2009) J Phys Chem C 113:6042CrossRefGoogle Scholar
  26. 26.
    He Y, Liang L, Liu Y, Feng J, Ma C, Li D (2014) J Catal 309:166CrossRefGoogle Scholar
  27. 27.
    Trimm DL, I.O.Y. Liu, Cant NW (2009) J Mol Catal A Chem 307:13CrossRefGoogle Scholar
  28. 28.
    Krajčí M, Hafner J (2014) J Catal 312:232CrossRefGoogle Scholar
  29. 29.
    Pei GX, Liu XY, Wang A, Lee AF, Isaacs MA, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T (2015) ACS Catal 5:3717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chunxia Che
    • 1
    • 2
  • Bingkai Wang
    • 1
  • Changfu Shan
    • 1
  • Hao Chen
    • 1
  • Weisheng Liu
    • 1
  • Yu Tang
    • 1
  1. 1.Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouPeople’s Republic of China
  2. 2.Lanzhou Chemical Industry Research Center of PetrochinaLanzhouPeople’s Republic of China

Personalised recommendations