Catalysis Letters

, Volume 146, Issue 12, pp 2504–2515 | Cite as

Nanostructured La0.8Sr0.2Fe0.8Cr0.2O3 Perovskite for the Steam Methane Reforming

  • Jairo A. Gómez-Cuaspud
  • Carlos A. Perez
  • Martin Schmal


This work describes the synthesis of La0.8Sr0.2Fe0.8Cr0.2O3 perovskite using a polymerization chemical route, for application on steam methane reforming reaction, compared to the LaFeO3 oxide. Results derived from X-ray diffraction (XRD), X-ray photoelectron spectroscopy and transmission electron microscopy (TEM) confirmed the presence of a prevalent orthorhombic structure related with a nanostructured solid (15–33 nm). The methane conversion of La0.8Sr0.2Fe0.8Cr0.2O3 oxide is very high compared to the LaFeO3 oxide at 700 °C. The stability test was performed during 240 h, using the catalyst under similar reaction conditions and the deactivation was low. Post reaction analyses by TEM, XRD and TPO showed growth of crystallite sizes, absence of carbon deposition, but no structural modifications, which suggest that the promoters prevent carbon deposition and resist structure changes during the steam methane reforming reaction.

Graphical Abstract


Chromium-iron perovskite Methane reforming Post reaction analyses 



CNPQ, CAPES, FAPERJ, FINEP and NUCAT and funds for supporting this research.


  1. 1.
    Medvedev DA, Lyagaeva JG, Gorbova EV, Demin AK, Tsiakaras P (2016) Advanced materials for SOFC application: strategies for the development of highly conductive and stable solid oxide proton electrolytes. Prog Mater Sci 75:38–79CrossRefGoogle Scholar
  2. 2.
    Chan SH, Ding OL (2005) Simulation of a solid oxide fuel cell power system fed by methane. Int J Hydrog Energy 30(2):167–179CrossRefGoogle Scholar
  3. 3.
    Sadykov V, Mezentseva N, Alikina G, Bunina R, Pelipenko V, Lukashevich A (2010) Nanocomposite catalysts for internal steam reforming of methane and biofuels: design and performance in: nanocomposite materials theory and applications, Vienna: INTECH, pp 909–946Google Scholar
  4. 4.
    Sadykov V, Mezentseva N, Alikina G, Bunina R, Rogov V, Krieger T (2009) Composite catalytic materials for steam reforming of methane and oxygenates: combinatorial synthesis, characterization and performance. Catal Today 145 127–137CrossRefGoogle Scholar
  5. 5.
    Sadykov V, Bobrova L, Pavlova S, Simagina V, Makarshin L, Parmon V, Ross JRH, Mirodatos C, Van Veen AC, Khristolyubov AP, Syngas generation from hydrocarbons and oxygenates with structured catalysts. Nova Science Pubs, Inc., New York, p 53Google Scholar
  6. 6.
    Bhat SA, Jh. Sadhukhan (2009) Process intensification aspects for steam methane reforming: an overview. AIChE J 55(2):408–422CrossRefGoogle Scholar
  7. 7.
    Nikolla E, Schwank J, Linic S (2009) Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: the impact of the formation of Ni alloy on chemistry. J Catal 263:220–227CrossRefGoogle Scholar
  8. 8.
    Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z (2016) Perovskite-type oxides LaFe1–xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. J Appl Energy 168:193–203CrossRefGoogle Scholar
  9. 9.
    Mihai O, Chen D, Holmen A (2011) Catalytic consequence of oxygen of lanthanum ferrite perovskite in chemical looping reforming of methane. Ind Eng Chem Res 50:2613–2621CrossRefGoogle Scholar
  10. 10.
    Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z (2014) La1−xSrxFeO3 perovskites as oxygen carriers for the partial oxidation of methane to syngas. Chin J Catal 35:1196–1205CrossRefGoogle Scholar
  11. 11.
    Fierro JLG, Peña MA (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018CrossRefGoogle Scholar
  12. 12.
    Tejuca LG, Fierro JLG, Tascon JMD (1989) Structure and reactivity of perovskite-type oxides Adv Catal 36:237–328Google Scholar
  13. 13.
    Zhang HM, Shimizu Y, Teraoka T, Miura N, Yamazoe N (1990) Oxygen sorption and catalytic properties of La1−xSrxCo1−yFeyO3 perovskite-type oxides. J Catal 121:432–440CrossRefGoogle Scholar
  14. 14.
    Shafiefarhood A, Galinsky N, Huang Y, Chen Y, Li F (2014) Fe2O3@LaxSr1−xFeO3 core–shell redox catalyst for methane partial oxidation. Chem Cat Chem 6:790–799Google Scholar
  15. 15.
    Neal LM, Shafiefarhood A, Li F (2014) Dynamic methane partial oxidation using a Fe2O3@La0.8Sr0.2FeO3−δ core–shell redox catalyst in the absence of gaseous oxygen. ACS Catal 4:3560–3569CrossRefGoogle Scholar
  16. 16.
    Neal LM, Shafiefarhood A, Li F (2015) Effect of core and shell compositions on MeOx@ LaySr1 – yFeO3 core–shell redox catalysts for chemical looping reforming of methane. Appl Energy 157:391–398CrossRefGoogle Scholar
  17. 17.
    Arai H, Yamada T, Eguehi K, Seiyama T (1986) Catalytic combustion of methane over various perovskite-type oxides. Appl Catal 26:265–276CrossRefGoogle Scholar
  18. 18.
    Goldwasser MR, Rivas ME, Lugo ML, Pietri E, Pérez-Zurita J, Cubeiro ML (2005) Combined methane reforming in presence of CO2 and O2 over LaFe1−xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal Today 107–108:106–113CrossRefGoogle Scholar
  19. 19.
    Zhang HM, Shimizu Y, Teraoka T, Miura N, Yamazoe N (1990) Oxygen sorption and catalytic properties of lanthanum strontium cobalt iron oxide (La1−xSrxCo1−yFeyO3) perovskite-type oxides. J Catal 121(2):432–438CrossRefGoogle Scholar
  20. 20.
    Białobok B, Trawczynski J, Mista W, Zawadzki M (2007) Oxidation of ethanol over supported manganese catalysts—effect of the carrier. Appl Catal B 72:395CrossRefGoogle Scholar
  21. 21.
    Oliva C, Cappelli S, Kryukov A, Chiarello GL, Vishniakov AV, Forni L (2006) Effect of preparation parameters on the properties of La0.9M0.1CoO3 catalysts: an EMR investigation. J Mol Cat A 255:36CrossRefGoogle Scholar
  22. 22.
    Gómez-Cuaspud JA, Schmal M (2013) Nanostructured metal oxides obtained by means polymerization-combustion at low temperature for CO selective oxidation. Int J Hydrog Energy 38:7458–7468CrossRefGoogle Scholar
  23. 23.
    Rodríguez-Carvajal J (2001) Recent developments of the program FULLPROF, in commission on powder diffraction. IUCr Newslett 26:12–19Google Scholar
  24. 24.
    Phokha S, Pinitsoontorn S, Rujirawat S, Maensiri S (2015) Polymer pyrolysis synthesis and magnetic properties of LaFeO3 nanoparticles. Physica B 476:55–60CrossRefGoogle Scholar
  25. 25.
    Schmal M, C.A.C. Perez, R.N.S.H. Magalhaes (2014) Synthesis and characterization of perovskite-type oxides La12xMxCoO3 (M = Ce, Sr) for the selective CO oxidation (SELOX). Top Catal 57:1103–1111CrossRefGoogle Scholar
  26. 26.
    Li F, Liu Y, Sun Z, Liu R, Kou C, Zhao Y, Zhao D (2011) Facile preparation of porous LaFeO3 nanomaterial by self-combustion of ionic liquids. Mater Lett 65:406–408CrossRefGoogle Scholar
  27. 27.
    Grabowska E (2016) Selected perovskite oxides: characterization, preparation and photocatalytic properties—review. Appl Catal B 186:97–126CrossRefGoogle Scholar
  28. 28.
    Thirumalairajan S, Girija K, Hebalkar NY, Mangalaraj D, Viswanathan C, Ponpandian N (2013) Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities, RSC Adv 3:7549–7561CrossRefGoogle Scholar
  29. 29.
    Mali A, Ataie A (2004) Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram Int 30:1979–1983CrossRefGoogle Scholar
  30. 30.
    Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212:17–60CrossRefGoogle Scholar
  31. 31.
    Zhou L, Yuan Q, Li X, Xu J, Xia F, Xiao J (2015) The effects of sintering temperature of (La0.8Sr0.2)2FeMnO6 – 1 on the NO2 sensing property for YSZ-based potentiometric sensor. Sens Actuators B 206:311–318CrossRefGoogle Scholar
  32. 32.
    Huang M, Qin M, Cao Z, Jia B, Chen P, Wu H, Wang X, Wan Q, Qu X (2016) Magnetic iron nanoparticles prepared by solution combustion synthesis and hydrogen reduction. Chem Phys Lett 657:33–38CrossRefGoogle Scholar
  33. 33.
    Singh D, Gupta S, Mahajan A (2016) Structural and composition dependent transport properties of perovskite oxides La0.8R0.2Fe0.5Cr0.5O3 (R = La, Nd, Gd and Dy). Ceram Int 42:11020–11024CrossRefGoogle Scholar
  34. 34.
    Jeong MH, Lee DH, Bae JW (2015) Reduction and oxidation kinetics of different phases of iron oxides. Int J Hydrog Energy 40(6):2613–2620CrossRefGoogle Scholar
  35. 35.
    Hueso JL, Caballero A, Ocaña M, Elipe G (2008) Reactivity of lanthanum substituted cobaltites toward carbon particles. J Catal 257:334–336CrossRefGoogle Scholar
  36. 36.
    De Almeida RM, Fajardo HV, Mezalira DZ, Nuernberg GB, Noda LK, Probst LF, N.L.V. Carreño (2006) Preparation and evaluation of porous nickel alumina spheres as catalyst in the production of hydrogen from decomposition of methane. J Mol Catal A 259:328–335CrossRefGoogle Scholar
  37. 37.
    Natile MM, Poletto F, Galenda A, Glisenti A, Montini T, De Rogatis L, Fornasiero P (2008) La0.6Sr0.4Co1 – yFeyO3 – δ perovskites: influence of the Co/Fe atomic ratio on properties and catalytic activity toward alcohol steam-reforming. Chem Mater 20:2314–2327CrossRefGoogle Scholar
  38. 38.
    Toniolo FS, R.N.S. Magalhães, C.A.C. Perez, Schmal M (2012) Structural investigation of LaCoO3 and LaCoCuO3 perovskite-type oxides and the effect of Cu on coke deposition in the partial oxidation of methane. Appl Catal B 117:156–166CrossRefGoogle Scholar
  39. 39.
    Fuentes S, Muñoz P, Barraza N, Chavez-Angel E, Sotomayor Torres CM (2015) Structural characterization of slightly Fe-doped SrTiO3 grown via a sol–gel hydrothermal synthesis. J Sol Gel Sci Technol 75:593–601CrossRefGoogle Scholar
  40. 40.
    Li W, Xiong CY, Jia LC, Pu J, Chi B, Chen X, Schwank JW, Li J (2015) Strontium-doped samarium manganite as cathode materials for oxygen reduction reaction in solid oxide fuel. J Power Sources 284:272–278CrossRefGoogle Scholar
  41. 41.
    Chen K, Hyodo J, Dodd A, Ai N, Ishihara T, Jiane L, Jiang SP (2015) Chromium deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells. R Soc Chem 182:457–476Google Scholar
  42. 42.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  43. 43.
    Zhang Z, Chen D, Dong F, Shao Z Z (2013) Efficient and CO2-tolerant oxygen transport membranes prepared from high-valence B-site substituted cobalt-free SrFeO3−δ. Chem Mater 25(6):815–817CrossRefGoogle Scholar
  44. 44.
    Ghaffari M, Shannon M, Hui H, Tan OK, Irannejad A (2012) Preparation, surface state and band structure studies of SrTi(1−x)Fe(x)O(3−δ) (x = 0–1) perovskite-type nano structure by X-ray and ultraviolet photoelectron spectroscopy. Surf Sci 606:670–677CrossRefGoogle Scholar
  45. 45.
    Sutthiumporn K, Maneerung T, Kathiraser Y (2012) S. Kawi, CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C–H activation and carbon suppression. Int J Hydrog Energy 37(15):11195–11207CrossRefGoogle Scholar
  46. 46.
    He F, Li X, Zhao K, Huang Z, Wei G, Li H (2013) The use of La1 – xSrxFeO3 perovskite-type oxides as oxygen carriers in chemical-looping reforming of methane. Fuel 108:465–473CrossRefGoogle Scholar
  47. 47.
    Zhu X, Wei Y, Wang H, Li K (2013) Ce–Fe oxygen carriers for chemical-looping steam methane reforming., Int J Hydrog Energy 38(11):4492–4501CrossRefGoogle Scholar
  48. 48.
    Teng F, Han W, Liang SH, Gaugeu B, Zong RL, Zhu YF (2007) Catalytic behavior of hydrothermally synthesized La0.5Sr0.5MnO3 single-crystal cubes in the oxidation of CO and CH4. J Catal 250:1–11CrossRefGoogle Scholar
  49. 49.
    Sun YF, Li JH, Cui SH, Chuang KT, Luo JL (2015) Carbon deposition and sulfur tolerant La0.4Sr0.5Ba0.1TiO3–La0.4Ce0.6O1.8 anode catalysts for solid oxide fuel cells. Electrochim Acta 151:81–88CrossRefGoogle Scholar
  50. 50.
    Miguel-Pérez V, Martínez-Amesti A, Isabel Arriortua M (2015) Compatibility between strontium-doped ferrite cathode and metallic interconnects in solid oxide fuel cells. J Power Sources 280:505–515CrossRefGoogle Scholar
  51. 51.
    Zheng Y, Zhang C, Ran R, Cai R, Shao Z, Farrusseng D (2009) A new symmetric solid oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3 perovskite oxide as both the anode and cathode. Acta Mater 57:1165–1175CrossRefGoogle Scholar
  52. 52.
    Tanaka K, Moro-oka Y, Ishigure K, Yajima T, Okabe Y, Kato Y et al (2004) A new catalyst for selective oxidation of CO in H2: part 1, activation by depositing a large amount of FeOx on Pt/Al2O3 and Pt/CeO2 catalysts. Catal Lett 92:115–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jairo A. Gómez-Cuaspud
    • 1
  • Carlos A. Perez
    • 2
  • Martin Schmal
    • 2
  1. 1.Grupo de Integridad y Evaluación de Materiales (GIEM), Instituto para la Investigación e Innovación en Ciencia y Tecnología de Materiales (INCITEMA)Universidad Pedagógica y Tecnológica de ColombiaTunjaColombia
  2. 2.Centro de TecnologiaFederal University of Rio de Janeiro-NUCAT/COPPE/UFRJRio de JaneiroBrazil

Personalised recommendations