Catalysis Letters

, Volume 147, Issue 1, pp 62–70 | Cite as

Effect of Steam During Fischer–Tropsch Synthesis Using Biomass-Derived Syngas

  • Zi Wang
  • Khiet Mai
  • Nitin Kumar
  • Thomas Elder
  • Leslie H. Groom
  • James J. SpiveyEmail author


Fischer–Tropsch synthesis (FTS) with biomass-derived syngas was performed using both iron-based 100Fe/6Cu/4K/25Al catalyst and ruthenium-based 5 % Ru/SiO2 catalyst. During FTS, different concentrations of steam were co-fed with the biomass-derived syngas to promote the water gas shift reaction and increase the H2/CO ratio. On Fe-based catalysts the increase in steam concentration led to lower conversion, while deactivation is not observed on Ru-based catalysts. XRD of the spent iron-based catalyst showed the oxidation of iron carbides. Adding steam inhibited surface carbon deposition, as measured by temperature programmed hydrogenation. The iron carbide phase could be re-carburized by flowing CO. The addition of steam had different effects on these two catalysts. Fe-based catalyst showed significantly lower methane selectivity and greater C5+ hydrocarbon selectivity, while on the Ru-based catalyst, adding steam only showed slightly decreased methane selectivity.

Graphical Abstract


Steam Syngas Iron Carbide Methane Selectivity Chain Growth Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by U.S. Department of Agriculture, under Award Number 11-DG- 11221636-187. The help of Xiaodan Cui from Louisiana State University on Scanning electron microscopy is gratefully appreciated. We thank Kim Hutchison from North Carolina State University for the ICP-OES analysis.


  1. 1.
    Digman B, Joo HS, Kim D-S (2009) Recent progress in gasification/pyrolysis technologies for biomass conversion to energy. Environ Prog Sustain Energy 28:47–51CrossRefGoogle Scholar
  2. 2.
    Bozell JJ, Astner A, Baker D, Biannic B, Cedeno D, Elder T, Hosseinaei O, Delbeck L, Kim J-W, O’Lenick CJ, Young T (2014) Integrating separation and conversion—conversion of biorefinery process streams to biobased chemicals and fuels. BioEnergy Res 7:856–866CrossRefGoogle Scholar
  3. 3.
    Wang Z, Kumar N, Spivey JJ (2016) Preparation and characterization of lanthanum-promoted cobalt–copper catalysts for the conversion of syngas to higher oxygenates: formation of cobalt carbide. J Catal 339:1–8CrossRefGoogle Scholar
  4. 4.
    Wang Z, Spivey JJ (2015) Effect of ZrO2, Al2O3 and La2O3 on cobalt–copper catalysts for higher alcohols synthesis. Appl Catal A 507:75–81CrossRefGoogle Scholar
  5. 5.
    Prieto G, Beijer S, Smith ML, He M, Au Y, Wang Z, Bruce DA, de Jong KP, Spivey JJ, de Jongh PE (2014) Design and synthesis of copper–cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. Angew Chem Int Ed 53:6397–6401CrossRefGoogle Scholar
  6. 6.
    Elder T, Groom LH (2011) Pilot-scale gasification of woody biomass. Biomass Bioenergy 35:3522–3528CrossRefGoogle Scholar
  7. 7.
    Skoulou V, Zabaniotou A, Stavropoulos G, Sakelaropoulos G (2008) Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier. Int J Hydrogen Energy 33:1185–1194CrossRefGoogle Scholar
  8. 8.
    Walawender WP, Chee CS, Geyer WA (1988) Influence of tree species and wood deterioration on downdraft gasifier performance. Biomass 17:51–64CrossRefGoogle Scholar
  9. 9.
    Yates IC, Satterfield CN (1989) Effect of carbon dioxide on the kinetics of the Fischer–Tropsch synthesis on iron catalysts. Ind Eng Chem Res 28:9–12CrossRefGoogle Scholar
  10. 10.
    Satterfield CN, Hanlon RT, Tung SE, Zou ZM, Papaefthymiou GC (1986) Effect of water on the iron-catalyzed Fischer–Tropsch synthesis. Ind Eng Chem Prod Res Dev 25:407–414CrossRefGoogle Scholar
  11. 11.
    Pendyala VRR, Jacobs G, Mohandas JC, Luo M, Hamdeh HH, Ji Y, Ribeiro MC, Davis BH (2010) Fischer–Tropsch synthesis: effect of water over iron-based catalysts. Catal Lett 140:98–105CrossRefGoogle Scholar
  12. 12.
    Claeys M, van Steen E (2002) On the effect of water during Fischer–Tropsch synthesis with a ruthenium catalyst. Catal Today 71:419–427CrossRefGoogle Scholar
  13. 13.
    Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer–Tropsch process. Appl Catal A 138:319–344CrossRefGoogle Scholar
  14. 14.
    Hilmen AM, Schanke D, Hanssen KF, Holmen A (1999) Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 186:169–188CrossRefGoogle Scholar
  15. 15.
    Jager B, Espinoza R (1995) Advances in low temperature Fischer–Tropsch synthesis. Catal Today 23:17–28CrossRefGoogle Scholar
  16. 16.
    van der Laan GP, Beenackers AACM (2000) Intrinsic kinetics of the gas–solid Fischer–Tropsch and water gas shift reactions over a precipitated iron catalyst. Appl Catal A 193:39–53CrossRefGoogle Scholar
  17. 17.
    Sharma P, Elder T, Groom LH, Spivey JJ (2013) Effect of structural promoters on Fe-based Fischer–Tropsch synthesis of biomass derived syngas. Top Catal 57:526–537CrossRefGoogle Scholar
  18. 18.
    Mai K, Elder T, Groom LH, Spivey JJ (2015) Fe-based Fischer Tropsch synthesis of biomass-derived syngas: effect of synthesis method. Catal Commun 65:76–80CrossRefGoogle Scholar
  19. 19.
    Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A 259:221–226CrossRefGoogle Scholar
  20. 20.
    Dry ME (1976) Advances in Fishcher-Tropsch Chemistry. Ind Eng Chem Prod Res Dev 15:282–286CrossRefGoogle Scholar
  21. 21.
    Botes FG (2008) The effects of water and CO2 on the reaction kinetics in the iron-based low-temperature Fischer–Tropsch Synthesis: a literature review. Catal Rev 50:471–491CrossRefGoogle Scholar
  22. 22.
    Ma W, Jacobs G, Graham UM, Davis BH (2013) Fischer–Tropsch synthesis: effect of K loading on the water–gas shift reaction and liquid hydrocarbon formation rate over precipitated iron catalysts. Top Catal 57:561–571CrossRefGoogle Scholar
  23. 23.
    Storsæter S, Borg Ø, Blekkan EA, Holmen A (2005) Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts. J Catal 231:405–419CrossRefGoogle Scholar
  24. 24.
    Jacobs G, Das TK, Li J, Luo M, Patterson PM, Davis BH (2007) Fischer–Tropsch synthesis: influence of support on the impact of co-fed water for cobalt-based catalysts. In: Davis BH, Occelli ML (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 217–253Google Scholar
  25. 25.
    Das TK, Conner WA, Li J, Jacobs G, Dry ME, Davis BH (2005) Fischer–Tropsch synthesis: kinetics and effect of water for a Co/SiO2 catalyst. Energy Fuels 19:1430–1439CrossRefGoogle Scholar
  26. 26.
    Das TK, Zhan X, Li J, Jacobs G, Dry ME, Davis BH (2007) Fischer–Tropsch synthesis: kinetics and effect of water for a Co/Al2O3 catalyst. In: Davis BH, Occelli ML (eds) Studies in surface science and catalysis. Elsevier, Amsterdam, pp 289–314Google Scholar
  27. 27.
    Schulz H, Claeys M, Harms S (1997) Effect of water partial pressure on steady state Fischer–Tropsch activity and selectivity of a promoted cobalt catalyst. Stud Surf Sci Catal 107:193–200CrossRefGoogle Scholar
  28. 28.
    Yang J, Liu Y, Chang J, Wang Y-N, Bai L, Xu Y-Y, Xiang H-W, Li Y-W, Zhong B (2003) Detailed kinetics of Fischer–Tropsch synthesis on an industrial Fe–Mn catalyst. Ind Eng Chem Res 42:5066–5090CrossRefGoogle Scholar
  29. 29.
    Lox ES, Froment GF (1993) Kinetics of the Fischer–Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling. Ind Eng Chem Res 32:71–82CrossRefGoogle Scholar
  30. 30.
    Gnanamani MK, Jacobs G, Hamdeh HH, Shafer WD, Liu F, Hopps SD, Thomas GA, Davis BH (2016) Hydrogenation of carbon dioxide over Co–Fe bimetallic catalysts. ACS Catal 6:913–927CrossRefGoogle Scholar
  31. 31.
    Herranz T, Rojas S, Pérez-Alonso FJ, Ojeda M, Terreros P, Fierro JLG (2006) Carbon oxide hydrogenation over silica-supported iron-based catalysts: influence of the preparation route. Appl Catal A 308:19–30CrossRefGoogle Scholar
  32. 32.
    Lee J-F, Chern W-S, Lee M-D, Dong T-Y (1992) Hydrogenation of carbon dioxide on iron catalysts doubly promoted with manganese and potassium. Can J Chem Eng 70:511–515CrossRefGoogle Scholar
  33. 33.
    Xu J, Bartholomew CH (2005) Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer–Tropsch catalysts. J Phys Chem B 109:2392–2403CrossRefGoogle Scholar
  34. 34.
    Shultz JF, Hall WK, Seligman B, Anderson RB (1955) Studies of the Fischer–Tropsch synthesis. XIV. Hägg iron carbide as catalysts1. J Am Chem Soc 77:213–221CrossRefGoogle Scholar
  35. 35.
    Pham TH, Qi Y, Yang J, Duan X, Qian G, Zhou X, Chen D, Yuan W (2015) Insights into Hägg iron-carbide-catalyzed Fischer–Tropsch synthesis: suppression of CH4 formation and enhancement of C–C coupling on χ-Fe5C2 (510). ACS Catal 5:2203–2208CrossRefGoogle Scholar
  36. 36.
    Löchner U, Papp H, Baerns M (1986) Iron/manganese oxide catalysts for Fischer–Tropsch synthesis PART III: phase changes in iron/manganese oxide Fischer–Tropsch catalysts during start-up and synthesis process. Appl Catal 23:339–354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zi Wang
    • 1
  • Khiet Mai
    • 1
  • Nitin Kumar
    • 1
  • Thomas Elder
    • 2
  • Leslie H. Groom
    • 2
  • James J. Spivey
    • 1
    Email author
  1. 1.Department of Chemical EngineeringLouisiana State UniversityBaton RougeUSA
  2. 2.USDA Forest Service, Southern Research StationPinevilleUSA

Personalised recommendations