Catalysis Letters

, Volume 146, Issue 12, pp 2430–2440 | Cite as

EXAFS Characterization of Pd Catalysts for Enantioselective Hydrogenation of α-Phenylcinnamic Acid: Pretreatment Effects and Thiol Adsorption

  • Takeshi Kubota
  • Haruka Sato
  • Takayuki Uchida
  • Tae Yeon Kim
  • Koji Omata
  • Tomonori Misaki
  • Yasuaki Okamoto
  • Takashi Sugimura


The effects of the pretreatment and Pd-distribution on the enantioselective hydrogenation of α-phenylcinnamic acid over cinchonidine-modified Pd/C and Pd/Al2O3 were studied by use of EXAFS techniques combined with thiol adsorption. It is suggested that the enhanced performance by the H2-pretreatment at 353 K is ascribed to the elimination of contaminants and/or H2O from Pd/C. The Pd–S CN is related to the Pd dispersion and the reactivity and diffusivity of thiols used.

Graphical Abstract


EXAFS Pd catalysts Enantioselective hydrogenation α-Phenylcinnamic acid Thiol adsorption 

Supplementary material

10562_2016_1859_MOESM1_ESM.docx (52 kb)
Supplementary material 1 (DOCX 51 KB)


  1. 1.
    Mallat T, Orglmeister E, Baiker A (2007) Chem Rev 107:4863CrossRefGoogle Scholar
  2. 2.
    E. Zhan, C. Chen, Y. Li, W. Shen (2015) Catal Sci Technol 5:650CrossRefGoogle Scholar
  3. 3.
    Studer M, Blaser HU, Exner C (2003) Adv Synth Catal 345:45CrossRefGoogle Scholar
  4. 4.
    D. Y. Murzin, P. Maki-Arvela, E. Toukoniitty, T. Salmi (2005) Catal Rev Sci Eng 47:175CrossRefGoogle Scholar
  5. 5.
    Sugimura T (1999) Catal Surv Jpn 3:37CrossRefGoogle Scholar
  6. 6.
    Nitta Y (2000) Top Catal 13:179CrossRefGoogle Scholar
  7. 7.
    Tungler, E., Sipos, H. Hada (2006) Curr Org Chem 10:1569CrossRefGoogle Scholar
  8. 8.
    Sugimura T (2008) In: Ding K, Uozumi Y (eds) Handbook of asymmetric heterogeneous catalysis. Wiley, Weinheim, p 357Google Scholar
  9. 9.
    Nitta Y, Ueda Y, Imanaka T (1994) Chem Lett 23:1095CrossRefGoogle Scholar
  10. 10.
    Nitta Y, Kubota T, Okamoto Y (2000) Bull Chem Soc Jpn 73:2635CrossRefGoogle Scholar
  11. 11.
    Nitta Y, Kobiro K, Okamoto Y (1997) In: Blaser HU, Baiker A, Prins R (eds) Heterogeneous catalysis and fine chemicals IV. Elsevier, Amsterdam, p 191Google Scholar
  12. 12.
    Nitta Y, Okamoto Y (1998) Chem Lett 27:1115CrossRefGoogle Scholar
  13. 13.
    Nitta Y, Watanabe J, Okuyama T, Sugimura T (2005) J Catal 236:164CrossRefGoogle Scholar
  14. 14.
    Kim TY, Yokota M, Uchida T, Sugimura T (2009) Catal Lett 131:279CrossRefGoogle Scholar
  15. 15.
    Kim TY, Uchida T, Ogawa H, Nitta Y, Okuyama T, Sugimura T, Hirayama S, Honma T, Sugiura M, Kubota T, Okamoto Y (2010) Top Catal 53:116CrossRefGoogle Scholar
  16. 16.
    H. Sato, T. Mameda, K. Nakai, T. Misaki, Y. Haruyama, S. Sonobe, T. Kubota, Y. Okamoto, T. Sugimura (2016) Res React Interm 42:31Google Scholar
  17. 17.
    Nitta Y (1999) Chem Lett 28:635CrossRefGoogle Scholar
  18. 18.
    T. Y. Kim, T. Sugimura (2010) J Mol Catal A 327:58CrossRefGoogle Scholar
  19. 19.
    Szöllösi G, Herman B, Fulop F, Bartok M (2010) J Catal 276:259CrossRefGoogle Scholar
  20. 20.
    Makra Z, Szöllösi G, Bartok M (2012) Catal Today 181:56CrossRefGoogle Scholar
  21. 21.
    F. Meemken, N. Maeda, K. Hungerbuhler, A. Baiker (2012) ACS Catal 2:464CrossRefGoogle Scholar
  22. 22.
    Nakai K, Misaki T, Okamoto Y, Sugimura T (2015) Bull Chem Soc Jpn 88:300CrossRefGoogle Scholar
  23. 23.
    Pazmino JH, Bai C, Miller JT, Ribeiro FH, Delgass WN (2013) Catal Lett 143:1098CrossRefGoogle Scholar
  24. 24.
    Barbouth N, Salame M (1987) J Catal 104:240CrossRefGoogle Scholar
  25. 25.
    Marecot P, Mahoungou JR, Barbier J (1993) Appl Catal A 101:143CrossRefGoogle Scholar
  26. 26.
    Sugimura T, Oie K, Misaki T, Okamoto Y, Tanaka K, Mori H (2013) Catal Lett 143:495CrossRefGoogle Scholar
  27. 27.
    Kubota T, Ogawa H, Okamoto Y, Misaki T, Sugimura T (2012) Appl Catal A 437/438:18CrossRefGoogle Scholar
  28. 28.
    Kubota T, Kubota H, Kubota T, Moriyasu E, Uchida T, Nitta Y, Sugimura T, Okamoto Y (2009) Catal Lett 129:387CrossRefGoogle Scholar
  29. 29.
    Mameda T, Nakai K, Misaki T, Okamoto Y, Sugimura T (2015) Catal Today 245:129CrossRefGoogle Scholar
  30. 30.
    Frenkel AI, Hills CW, Nuzzo RG (2001) J Phys Chem B 105:12689CrossRefGoogle Scholar
  31. 31.
    Nepijko SA, Klimenkov M, Adelt M, Kuhlenbeck H, Schlögel SR, Freund H-J (1999) Langmuir 15:5309CrossRefGoogle Scholar
  32. 32.
    Krüger S, Vent S, Nörtemann F, Staufer M, Rösch N (2001) J Chem Phys 115:2082CrossRefGoogle Scholar
  33. 33.
    Kubota T, Kitajima Y, Asakura K, Iwasawa Y (1999) Bull Chem Soc Jpn 72:673CrossRefGoogle Scholar
  34. 34.
    Bugaev AL, Guda AA, Lomachenko KA, Srabionyan VV, Bugaev LA, Soldatov AV, Lamberti C, Dmitriev VP, van Bokhoven JA (2014) J Phys Chem C 118:10416CrossRefGoogle Scholar
  35. 35.
    Sugimura T, Ogawa H (2010) Chem Lett 39:232CrossRefGoogle Scholar
  36. 36.
    Ogawa H, Mameda T, Misaki T, Okamoto Y, Sugimura T (2013) Chem Lett 42:813CrossRefGoogle Scholar
  37. 37.
    Ferri D, Bürgi T, Baiker A (2002) J Catal 210:160CrossRefGoogle Scholar
  38. 38.
    Zaera F (2009) Acc Chem Res 42:1152CrossRefGoogle Scholar
  39. 39.
    Nakatsuji M, Misaki T, Okamoto Y, Sugimura T (2016) Bull Chem Soc Jpn 89:1187CrossRefGoogle Scholar
  40. 40.
    Majumder C (2008) Langmuir 24:10838CrossRefGoogle Scholar
  41. 41.
    Love JC, Wolfe DB, Haasch R, Chabinyc ML, Paul KE, Whitesides GM, Nuzzo RG (2003) J Am Chem Soc 125:2597CrossRefGoogle Scholar
  42. 42.
    John NS, Thomas PS, Kulkarni GU (2003) J Phys Chem B 107:11376CrossRefGoogle Scholar
  43. 43.
    Rauch T, Bomermann J, Bormann B, Speller S, Heiland W (1999) Surf Sci 441:107CrossRefGoogle Scholar
  44. 44.
    Speller S, Rauch T, Postnikov A, Heiland W (2000) Phys Rev B 6:17297Google Scholar
  45. 45.
    Berndt W, Hora R, Scheffer M (1982) Surf Sci 117:188CrossRefGoogle Scholar
  46. 46.
    Kolthoff D, Jurgens D, Schweicke C, Pfnur H (1996) Surf Sci 365:374CrossRefGoogle Scholar
  47. 47.
    van Hardeveld R, Hartog F (1969) Surf Sci 15:222Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Takeshi Kubota
    • 1
  • Haruka Sato
    • 2
  • Takayuki Uchida
    • 2
  • Tae Yeon Kim
    • 2
  • Koji Omata
    • 1
  • Tomonori Misaki
    • 2
  • Yasuaki Okamoto
    • 2
  • Takashi Sugimura
    • 2
  1. 1.Interdisciplinary Graduate School of Science and EngineeringShimane UniversityMatsueJapan
  2. 2.Graduate School of Material ScienceUniversity of HyogoAko-GunJapan

Personalised recommendations