Skip to main content
Log in

A Comparative Study of NiO/Al2O3 Catalysts Prepared by Different Combustion Techniques for Octanal Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Four catalysts with the molar ratio of Ni:Al (1:2) were prepared by solution combustion synthesis (SCS) and sol–gel auto combustion synthesis (SGCS) techniques. Two fuels [urea and oxalyldihydrazide (ODH)] with distinct oxygen/carbon (O/C) ratios and chelating capability were chosen for investigating the effect of the fuel on the syntheses of these catalysts. All catalysts were fully characterized by PXRD, ICP-OES, TEM, H2-TPR, pyridine IR, H2-chemisorption and nitrogen physisorption. Pure NiO/Al2O3 (free of spinel) was achieved by application of SGCS and urea as a fuel. Thus, catalysts prepared by urea as a fuel showed high activity for hydrogenation of octanal even under moderate conditions (110 °C). Optimisation showed that the catalyst prepared via SCS using ODH as a fuel gave the best comparative aldehyde conversion and alcohol selectivity (98 and 97 %, respectively) albeit at a higher temperature of 150 °C. The catalysts with NiAl2O4 as the dominant phase presented the lowest acidity, likely due to the non-availability of acidic sites of alumina via formation of the spinel, thus making these catalysts highly selective and also offering a slow release of fresh Ni sites.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7

Similar content being viewed by others

References

  1. Kingsley JJ, Patil KC (1988) Mater Lett 6:427

    Article  CAS  Google Scholar 

  2. Patil KC, Aruna ST, Mimani T (2003) Curr Opin Solid State Mater Sci 6:507

    Article  Google Scholar 

  3. Prakash AS, Shivakumara C, Hegde MS (2007) Mat Sci Eng B 139:55

    Article  CAS  Google Scholar 

  4. Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278:297

    Article  CAS  Google Scholar 

  5. Devi SKL, Kumar KS, Balakrishnan A (2011) Mater Lett 65:35

    Article  Google Scholar 

  6. Gonzalez-Cortes SL, Imbert FE (2013) Appl Catal A 452:117

    Article  CAS  Google Scholar 

  7. Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Inst 31:1789

    Article  Google Scholar 

  8. Yue ZX, Zhou J, Li LT, Zhang HG, Gui ZL (2000) J Magn Magn Mater 208:55

    Article  CAS  Google Scholar 

  9. Xiao Q, Si Z, Yu Z, Qiu G (2007) Mater Sci Eng B 137:189

    Article  CAS  Google Scholar 

  10. Roy PK, Bera J (2008) J Mater Process Technol 197:279

    Article  CAS  Google Scholar 

  11. Toksha BG, Shirsath SE, Mane ML, Patange SM, Jadhav SS, Jadhav KM (2011) J Phys Chem C 115:20905

    Article  CAS  Google Scholar 

  12. Cwele T, Mahadevaiah N, Singh S, Friedrich HB (2016) Appl Catal B 182:1

    Article  CAS  Google Scholar 

  13. Aliotta C, Liotta LF, La Parola V, Martorana A, Muccillo ENS, Muccillo R, Deganello F (2016) Appl Catal B 197:14. doi:10.1016/j.apcatb.2016.02.044

  14. Gonzalez-Cortes SL, Xiao T-C, Costa PMFJ, Fontal B, Green MLH (2004) Appl Catal A 270:209

    Article  CAS  Google Scholar 

  15. Gonzalez-Cortes SL, Xiao T-C, Lin T-W, Green MLH (2006) Appl Catal A 302:264

    Article  CAS  Google Scholar 

  16. Jiao D, Ma Y, Cao F (2012) Particuology 10:468

    Article  CAS  Google Scholar 

  17. Dinka P, Mukasyan AS (2005) J Phys Chem B 109:21627

    Article  CAS  Google Scholar 

  18. Shi L, Tao K, Kawabata T, Shimamura T, Zhang XJ, Tsubaki N (2011) ACS Catal 1:1225

    Article  CAS  Google Scholar 

  19. Shi L, Jin Y, Xing C, Zeng C, Kawabata T, Imai K, Matsuda K, Tan Y, Tsubaki N (2012) Appl Catal A 435–436:217

    Article  Google Scholar 

  20. Kumar A, Mukasyan AS, Wolf EE (2010) Appl Catal A 372:175

    Article  CAS  Google Scholar 

  21. Yang JW, Fonseca MTH, List B (2004) Angew Chem Int Ed 43:6660

    Article  Google Scholar 

  22. Chen B, Dingerdissen U, Krauter JGE, Rotgerink H, Mobus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17

    Article  CAS  Google Scholar 

  23. Valand J, Mahomed AS, Singh S, Friedrich HB (2016) J Porous Mater 23:175

    Article  CAS  Google Scholar 

  24. Kahsar KR, Johnson S, Schwartz DK, Medlin JW (2014) Top Catal 57:1505

    Article  CAS  Google Scholar 

  25. Park JC, Lee HJ, Kim JY, Park KH, Song H (2010) J Phys Chem C 114:6381

    Article  CAS  Google Scholar 

  26. Kang M, Song MW, Kim TW, Kim KL (2002) Can. J Chem Eng 80:63

    CAS  Google Scholar 

  27. Rynkowski J, Rajski D, Szyszka I, Grzechowiak JR (2004) Catal Today 90:159

    Article  CAS  Google Scholar 

  28. Kirumakki SR, Shpeizer BG, Sagar GV, Chary KVR, Clearfield A (2006) J Catal 242:319

    Article  CAS  Google Scholar 

  29. Saadi A, Merabti R, Rassoul Z, Bettahar MM (2006) J Mol Catal A 253:79

    Article  CAS  Google Scholar 

  30. Meng X, Cheng H, Akiyama Y, Hao Y, Qiao W, Yu Y, Zhao F, Fujita S-i, Arai M (2009) J Catal 264:1

    Article  CAS  Google Scholar 

  31. Shimura K, Shimizu K-i (2012) Green Chem 14:2983

    Article  CAS  Google Scholar 

  32. Nikolaev SA, Pichugina DA, Mukhamedzyanova DF (2012) Gold Bull (Ber, Ger) 45:221

    Article  CAS  Google Scholar 

  33. Ungureanu A, Dragoi B, Chirieac A, Ciotonea C, Royer S, Duprez D, Mamede AS, Dumitriu E (2013) ACS Appl Mater Interfaces 5:3010

    Article  CAS  Google Scholar 

  34. Zhang L, Shu X, Zhang L (2013) Asian J Chem 25:5071

    CAS  Google Scholar 

  35. Wang X, Yu H, Hua D, Zhou S (2013) J Phys Chem C 117:7294

    Article  CAS  Google Scholar 

  36. Zaera F (2013) ChemSusChem 6:1797

    Article  CAS  Google Scholar 

  37. Chase GC, Espe MP, Evans EA, Ramsier RD, Reneker DH, Tuttle RW, Rapp J (2008) Manufacture of metal oxide fibers and nanofibers for decomposing toxic chemicals. WO2008111960A2

  38. Zeng Y, Ma H, Zhang H, Ying W, Fang D (2014) Fuel 137:155

    Article  CAS  Google Scholar 

  39. White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Chem Soc Rev 38:481

    Article  CAS  Google Scholar 

  40. Zhang J, Xu H, Jin X, Ge Q, Li W (2005) Appl Catal A 290:87

    Article  CAS  Google Scholar 

  41. Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Bin Park S (2008) Int J Hydrog Energy 33:2036

    Article  CAS  Google Scholar 

  42. Zou X, Wang X, Li L, Shen K, Lu X, Ding W (2010) Int J Hydrog Energy 35:12191

    Article  CAS  Google Scholar 

  43. Zhao A, Ying W, Zhang H, Ma H, Fang D (2012) Catal Commun 17:34

    Article  CAS  Google Scholar 

  44. Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) J Phys Chem C 117:8120

    Article  CAS  Google Scholar 

  45. Murthy IAPS, Swamy CS (1993) J Mater Sci 28:1194

    Article  CAS  Google Scholar 

  46. Muroyama H, Nakase R, Matsui T, Eguchi K (2010) Int J Hydrog Energy 35:1575

    Article  CAS  Google Scholar 

  47. Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C (2011) Int J Hydrog Energy 36:11433

    Article  CAS  Google Scholar 

  48. Lopez-Fonseca R, Jimenez-Gonzalez C, de Rivas B, Gutierrez-Ortiz JI (2012) Appl Catal A 437–438:53

    Article  Google Scholar 

  49. Yang R, Li X, Wu J, Zhang X, Zhang Z, Cheng Y, Guo J (2009) Appl Catal A 368:105

    Article  CAS  Google Scholar 

  50. Kelly M (2014) Octene-1 by sasol heptene-1 hydroformylation technology, PEP review 2014–12

  51. Patil KC (2008) Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. World Scientific, Singapore

  52. Nygren MA, Siegbahn PEM (1992) J Phys Chem 96:7579

    Article  CAS  Google Scholar 

  53. Zhang J, Wang H, Dalai AK (2008) Appl Catal A 339:121

    Article  CAS  Google Scholar 

  54. Chetty T, Friedrich HB, Dasireddy VDBC, Govender A, Mohlala PJ, Barnard W (2014) ChemCatChem 6:2384

    Article  CAS  Google Scholar 

  55. Tan M, Wang X, Wang X, Zou X, Ding W, Lu X (2015) J Catal 329:151

    Article  CAS  Google Scholar 

  56. Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrog Energy 32:1462

    Article  Google Scholar 

  57. Yang J, Wang X, Li L, Shen K, Lu X, Ding W (2010) Appl Catal B 96:232

    Article  CAS  Google Scholar 

  58. Chakraborty B, Viswanathan B (1999) Catal Today 49:253

    Article  CAS  Google Scholar 

  59. Kim SD, Baek SC, Lee Y-J, Jun K-W, Kim MJ, Yoo IS (2006) Appl Catal A 309:139

    Article  CAS  Google Scholar 

  60. Boukha Z, Jimenez-Gonzalez C, de Rivas B, Ramon Gonzalez-Velasco J, Ignacio Gutierrez-Ortiz J, Lopez-Fonseca R (2014) Appl Catal B 158:190

    Article  Google Scholar 

  61. Adams CR, Benesi HA, Curtis RM, Meisenheimer RG (1962) J Catal 1:336

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank SASOL, the National Research Foundation, South Africa (NRF) and the Technology and Human Resources for Industry Programme (THRIP Grant TP1208035643) for their financial support. We also thank the Electron Microscopy Unit at the University of KwaZulu-Natal (Westville).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger B. Friedrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahani, M.D., Valand, J., Mahomed, A.S. et al. A Comparative Study of NiO/Al2O3 Catalysts Prepared by Different Combustion Techniques for Octanal Hydrogenation. Catal Lett 146, 2441–2449 (2016). https://doi.org/10.1007/s10562-016-1858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1858-7

Keywords

Navigation