Catalysis Letters

, Volume 146, Issue 12, pp 2441–2449 | Cite as

A Comparative Study of NiO/Al2O3 Catalysts Prepared by Different Combustion Techniques for Octanal Hydrogenation

  • Majid D. Farahani
  • Jignesh Valand
  • Abdul S. Mahomed
  • Holger B. Friedrich


Four catalysts with the molar ratio of Ni:Al (1:2) were prepared by solution combustion synthesis (SCS) and sol–gel auto combustion synthesis (SGCS) techniques. Two fuels [urea and oxalyldihydrazide (ODH)] with distinct oxygen/carbon (O/C) ratios and chelating capability were chosen for investigating the effect of the fuel on the syntheses of these catalysts. All catalysts were fully characterized by PXRD, ICP-OES, TEM, H2-TPR, pyridine IR, H2-chemisorption and nitrogen physisorption. Pure NiO/Al2O3 (free of spinel) was achieved by application of SGCS and urea as a fuel. Thus, catalysts prepared by urea as a fuel showed high activity for hydrogenation of octanal even under moderate conditions (110 °C). Optimisation showed that the catalyst prepared via SCS using ODH as a fuel gave the best comparative aldehyde conversion and alcohol selectivity (98 and 97 %, respectively) albeit at a higher temperature of 150 °C. The catalysts with NiAl2O4 as the dominant phase presented the lowest acidity, likely due to the non-availability of acidic sites of alumina via formation of the spinel, thus making these catalysts highly selective and also offering a slow release of fresh Ni sites.

Graphical Abstract


NiO/Al2O3 NiAl2O4 Solution combustion Sol–gel auto combustion Hydrogenation 



We thank SASOL, the National Research Foundation, South Africa (NRF) and the Technology and Human Resources for Industry Programme (THRIP Grant TP1208035643) for their financial support. We also thank the Electron Microscopy Unit at the University of KwaZulu-Natal (Westville).


  1. 1.
    Kingsley JJ, Patil KC (1988) Mater Lett 6:427CrossRefGoogle Scholar
  2. 2.
    Patil KC, Aruna ST, Mimani T (2003) Curr Opin Solid State Mater Sci 6:507CrossRefGoogle Scholar
  3. 3.
    Prakash AS, Shivakumara C, Hegde MS (2007) Mat Sci Eng B 139:55CrossRefGoogle Scholar
  4. 4.
    Sharma S, Hu Z, Zhang P, McFarland EW, Metiu H (2011) J Catal 278:297CrossRefGoogle Scholar
  5. 5.
    Devi SKL, Kumar KS, Balakrishnan A (2011) Mater Lett 65:35CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Cortes SL, Imbert FE (2013) Appl Catal A 452:117CrossRefGoogle Scholar
  7. 7.
    Mukasyan AS, Epstein P, Dinka P (2007) Proc Combust Inst 31:1789CrossRefGoogle Scholar
  8. 8.
    Yue ZX, Zhou J, Li LT, Zhang HG, Gui ZL (2000) J Magn Magn Mater 208:55CrossRefGoogle Scholar
  9. 9.
    Xiao Q, Si Z, Yu Z, Qiu G (2007) Mater Sci Eng B 137:189CrossRefGoogle Scholar
  10. 10.
    Roy PK, Bera J (2008) J Mater Process Technol 197:279CrossRefGoogle Scholar
  11. 11.
    Toksha BG, Shirsath SE, Mane ML, Patange SM, Jadhav SS, Jadhav KM (2011) J Phys Chem C 115:20905CrossRefGoogle Scholar
  12. 12.
    Cwele T, Mahadevaiah N, Singh S, Friedrich HB (2016) Appl Catal B 182:1CrossRefGoogle Scholar
  13. 13.
    Aliotta C, Liotta LF, La Parola V, Martorana A, Muccillo ENS, Muccillo R, Deganello F (2016) Appl Catal B 197:14. doi: 10.1016/j.apcatb.2016.02.044
  14. 14.
    Gonzalez-Cortes SL, Xiao T-C, Costa PMFJ, Fontal B, Green MLH (2004) Appl Catal A 270:209CrossRefGoogle Scholar
  15. 15.
    Gonzalez-Cortes SL, Xiao T-C, Lin T-W, Green MLH (2006) Appl Catal A 302:264CrossRefGoogle Scholar
  16. 16.
    Jiao D, Ma Y, Cao F (2012) Particuology 10:468CrossRefGoogle Scholar
  17. 17.
    Dinka P, Mukasyan AS (2005) J Phys Chem B 109:21627CrossRefGoogle Scholar
  18. 18.
    Shi L, Tao K, Kawabata T, Shimamura T, Zhang XJ, Tsubaki N (2011) ACS Catal 1:1225CrossRefGoogle Scholar
  19. 19.
    Shi L, Jin Y, Xing C, Zeng C, Kawabata T, Imai K, Matsuda K, Tan Y, Tsubaki N (2012) Appl Catal A 435–436:217CrossRefGoogle Scholar
  20. 20.
    Kumar A, Mukasyan AS, Wolf EE (2010) Appl Catal A 372:175CrossRefGoogle Scholar
  21. 21.
    Yang JW, Fonseca MTH, List B (2004) Angew Chem Int Ed 43:6660CrossRefGoogle Scholar
  22. 22.
    Chen B, Dingerdissen U, Krauter JGE, Rotgerink H, Mobus K, Ostgard DJ, Panster P, Riermeier TH, Seebald S, Tacke T, Trauthwein H (2005) Appl Catal A 280:17CrossRefGoogle Scholar
  23. 23.
    Valand J, Mahomed AS, Singh S, Friedrich HB (2016) J Porous Mater 23:175CrossRefGoogle Scholar
  24. 24.
    Kahsar KR, Johnson S, Schwartz DK, Medlin JW (2014) Top Catal 57:1505CrossRefGoogle Scholar
  25. 25.
    Park JC, Lee HJ, Kim JY, Park KH, Song H (2010) J Phys Chem C 114:6381CrossRefGoogle Scholar
  26. 26.
    Kang M, Song MW, Kim TW, Kim KL (2002) Can. J Chem Eng 80:63Google Scholar
  27. 27.
    Rynkowski J, Rajski D, Szyszka I, Grzechowiak JR (2004) Catal Today 90:159CrossRefGoogle Scholar
  28. 28.
    Kirumakki SR, Shpeizer BG, Sagar GV, Chary KVR, Clearfield A (2006) J Catal 242:319CrossRefGoogle Scholar
  29. 29.
    Saadi A, Merabti R, Rassoul Z, Bettahar MM (2006) J Mol Catal A 253:79CrossRefGoogle Scholar
  30. 30.
    Meng X, Cheng H, Akiyama Y, Hao Y, Qiao W, Yu Y, Zhao F, Fujita S-i, Arai M (2009) J Catal 264:1CrossRefGoogle Scholar
  31. 31.
    Shimura K, Shimizu K-i (2012) Green Chem 14:2983CrossRefGoogle Scholar
  32. 32.
    Nikolaev SA, Pichugina DA, Mukhamedzyanova DF (2012) Gold Bull (Ber, Ger) 45:221CrossRefGoogle Scholar
  33. 33.
    Ungureanu A, Dragoi B, Chirieac A, Ciotonea C, Royer S, Duprez D, Mamede AS, Dumitriu E (2013) ACS Appl Mater Interfaces 5:3010CrossRefGoogle Scholar
  34. 34.
    Zhang L, Shu X, Zhang L (2013) Asian J Chem 25:5071Google Scholar
  35. 35.
    Wang X, Yu H, Hua D, Zhou S (2013) J Phys Chem C 117:7294CrossRefGoogle Scholar
  36. 36.
    Zaera F (2013) ChemSusChem 6:1797CrossRefGoogle Scholar
  37. 37.
    Chase GC, Espe MP, Evans EA, Ramsier RD, Reneker DH, Tuttle RW, Rapp J (2008) Manufacture of metal oxide fibers and nanofibers for decomposing toxic chemicals. WO2008111960A2Google Scholar
  38. 38.
    Zeng Y, Ma H, Zhang H, Ying W, Fang D (2014) Fuel 137:155CrossRefGoogle Scholar
  39. 39.
    White RJ, Luque R, Budarin VL, Clark JH, Macquarrie DJ (2009) Chem Soc Rev 38:481CrossRefGoogle Scholar
  40. 40.
    Zhang J, Xu H, Jin X, Ge Q, Li W (2005) Appl Catal A 290:87CrossRefGoogle Scholar
  41. 41.
    Koo KY, Roh H-S, Seo YT, Seo DJ, Yoon WL, Bin Park S (2008) Int J Hydrog Energy 33:2036CrossRefGoogle Scholar
  42. 42.
    Zou X, Wang X, Li L, Shen K, Lu X, Ding W (2010) Int J Hydrog Energy 35:12191CrossRefGoogle Scholar
  43. 43.
    Zhao A, Ying W, Zhang H, Ma H, Fang D (2012) Catal Commun 17:34CrossRefGoogle Scholar
  44. 44.
    Kathiraser Y, Thitsartarn W, Sutthiumporn K, Kawi S (2013) J Phys Chem C 117:8120CrossRefGoogle Scholar
  45. 45.
    Murthy IAPS, Swamy CS (1993) J Mater Sci 28:1194CrossRefGoogle Scholar
  46. 46.
    Muroyama H, Nakase R, Matsui T, Eguchi K (2010) Int J Hydrog Energy 35:1575CrossRefGoogle Scholar
  47. 47.
    Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C (2011) Int J Hydrog Energy 36:11433CrossRefGoogle Scholar
  48. 48.
    Lopez-Fonseca R, Jimenez-Gonzalez C, de Rivas B, Gutierrez-Ortiz JI (2012) Appl Catal A 437–438:53CrossRefGoogle Scholar
  49. 49.
    Yang R, Li X, Wu J, Zhang X, Zhang Z, Cheng Y, Guo J (2009) Appl Catal A 368:105CrossRefGoogle Scholar
  50. 50.
    Kelly M (2014) Octene-1 by sasol heptene-1 hydroformylation technology, PEP review 2014–12Google Scholar
  51. 51.
    Patil KC (2008) Chemistry of nanocrystalline oxide materials: combustion synthesis, properties and applications. World Scientific, SingaporeGoogle Scholar
  52. 52.
    Nygren MA, Siegbahn PEM (1992) J Phys Chem 96:7579CrossRefGoogle Scholar
  53. 53.
    Zhang J, Wang H, Dalai AK (2008) Appl Catal A 339:121CrossRefGoogle Scholar
  54. 54.
    Chetty T, Friedrich HB, Dasireddy VDBC, Govender A, Mohlala PJ, Barnard W (2014) ChemCatChem 6:2384CrossRefGoogle Scholar
  55. 55.
    Tan M, Wang X, Wang X, Zou X, Ding W, Lu X (2015) J Catal 329:151CrossRefGoogle Scholar
  56. 56.
    Sánchez-Sánchez MC, Navarro RM, Fierro JLG (2007) Int J Hydrog Energy 32:1462CrossRefGoogle Scholar
  57. 57.
    Yang J, Wang X, Li L, Shen K, Lu X, Ding W (2010) Appl Catal B 96:232CrossRefGoogle Scholar
  58. 58.
    Chakraborty B, Viswanathan B (1999) Catal Today 49:253CrossRefGoogle Scholar
  59. 59.
    Kim SD, Baek SC, Lee Y-J, Jun K-W, Kim MJ, Yoo IS (2006) Appl Catal A 309:139CrossRefGoogle Scholar
  60. 60.
    Boukha Z, Jimenez-Gonzalez C, de Rivas B, Ramon Gonzalez-Velasco J, Ignacio Gutierrez-Ortiz J, Lopez-Fonseca R (2014) Appl Catal B 158:190CrossRefGoogle Scholar
  61. 61.
    Adams CR, Benesi HA, Curtis RM, Meisenheimer RG (1962) J Catal 1:336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Majid D. Farahani
    • 1
  • Jignesh Valand
    • 1
  • Abdul S. Mahomed
    • 1
  • Holger B. Friedrich
    • 1
  1. 1.School of Chemistry and PhysicsUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations