Skip to main content
Log in

Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

To improve the dispersibility of graphene oxide (GO) in solvents, the grafting of polyacrylamide (PAM) from the GO surface was performed by redox polymerization system. The hydrophilic nature and high polarity of PAM have made effective dispersion of GO. Then, Pd nanoparticles (Pd NPs) were anchored on the surface of polyacrylamide grafted reduced graphene oxide nanosheets (PAM-g-rGO/Pd). The obtained nanocomposite was used for Suzuki–Miyaura cross-coupling reaction in an environmental friendly solvent under ambient conditions. The results showed that the prepared catalyst system exhibited high catalytic activity and stability which could be reused at least eight times without significant loss of its catalytic activity. This is mainly because of its small particle size, uniform dispersion of Pd NPs on the surface of PAM-g-GO/Pd, and lack of agglomeration of these nanoparticles during the preparation at room temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  2. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385

    Article  CAS  Google Scholar 

  3. Machado BF, Philippe S (2012) Catal Sci Technol 2:54

    Article  CAS  Google Scholar 

  4. Gao L, Yue W, Tao S, Fan L (2013) Langmuir 29:957

    Article  CAS  Google Scholar 

  5. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  6. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Prog Mater Sci 57:1061

    Article  CAS  Google Scholar 

  7. Bielawski CV, Dreyer DR, Park S, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  Google Scholar 

  8. Jiang K, Ye CN, Zhang PP, Wang XS, Zhao YL (2012) Macromolecules 45

  9. Lin Y, Jin J, Song M (2011) J Mater Chem 21:3455

    Article  CAS  Google Scholar 

  10. Deng Y, Li YJ, Dai J, Lang MD, Huang XY (2011) J Polym Sci Polym Chem 49:1582

    Article  CAS  Google Scholar 

  11. Kan L, Xu Z, Gao C (2011) Macromolecules 44:444

    Article  CAS  Google Scholar 

  12. Yuan W, Wang J, Shen T, Ren J (2013) Mater Lett 107:243

    Article  CAS  Google Scholar 

  13. Wang BD, Yang D, Zhang JZ, Xi CB, Hu JH (2011) J Phys Chem C 115:24636

    Article  CAS  Google Scholar 

  14. Degirmenci M, Hicri S, Yilmaz H (2008) Eur Polym J 44:3776

    Article  CAS  Google Scholar 

  15. Ramanathan T, Abdala AA, Stankovich S (2008) Nat Nanotechnol 3:327

    Article  CAS  Google Scholar 

  16. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) Adv Funct Mater 20:3322

    Article  CAS  Google Scholar 

  17. Ma L, Yang X, Gao L, Lu M, Guo C, Li Y, Tu Y, Zhu X (2013) Carbon 53:269

    Article  CAS  Google Scholar 

  18. Wang B, Yang D, Zhang JZ, Xi C, Hu J (2011) J Phys Chem C 115:24636

    Article  CAS  Google Scholar 

  19. Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973

    Article  CAS  Google Scholar 

  20. Molnar A (2011) Chem Rev 111:2251

    Article  CAS  Google Scholar 

  21. Tamami B, Mohaghegh Nezhad M, Ghasemi S, Farjadian F (2013) J Org Chem 743:10

    Article  CAS  Google Scholar 

  22. Guan ZH, Hu JL, Gu YL, Zhang HJ, Li GX, Li T, (2012) Green Chem 14:1964

    Article  CAS  Google Scholar 

  23. Santra S, Hota PK, Bhattacharyya R, Bera P, Ghosh P, Mandal SK (2013) ACS Catal 3:2776

    Article  CAS  Google Scholar 

  24. Park G, Lee S, Son SJ, Shin S (2013) Green Chem 15:3468

    Article  CAS  Google Scholar 

  25. Chen W, Zhong, L-X, Peng X-W, Wang K, Chena Z-F, Sun R-C (2014) Catal Sci Technol 4:1426

    Article  CAS  Google Scholar 

  26. Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V Li H, Namboothiri INN, Doris E (2015) Catal Sci Technol 5:2388

    Article  CAS  Google Scholar 

  27. Deraedt C, Salmon L, Astruc D (2014) Adv Synth Catal 356:2525

    Article  CAS  Google Scholar 

  28. Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515

    Article  CAS  Google Scholar 

  29. Tamami B, Ghasemi S (2010) J Mol Catal A Chem 322:98

    Article  CAS  Google Scholar 

  30. Golubeva ND, Dyusenalin BK Selenovab BS, Pomogailo SI, Zharmagambetova AK, Dzhardimalieva GI, Pomogailo AD (2011) Kinet Catal 52:242

    Article  CAS  Google Scholar 

  31. Pan HB, Yen CH, Yoon B, Sato M, Wai CM (2006) Commun 36:3473

    CAS  Google Scholar 

  32. Sullivan JA, Flanagan AF, Hain H (2009) Catal Today 145:108

    Article  CAS  Google Scholar 

  33. Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF (2013) J Mater Chem A 1:12909

    Article  CAS  Google Scholar 

  34. Gao S, Shang N, Feng C, Wang C, Wang Z (2014) RSC Adv 4:39242

    Article  CAS  Google Scholar 

  35. Yamamoto S-I, Kinoshita H, Hashimotob H, Nishin Y (2014) Nanoscale 6:6501

    Article  CAS  Google Scholar 

  36. Hoseini SJ, Dehghani M, Nasrabadi H (2014) Catal Sci Technol 4:1078

    Article  Google Scholar 

  37. Putta C, Sharavath V, Sarkara S, Ghosh S (2015) RSC Adv 5:6652

    Article  CAS  Google Scholar 

  38. He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312

    Article  CAS  Google Scholar 

  39. Lee KH, Han S-W, Kwon K-Y, Park JB (2013) J Colloid Interf Sci 403:127

    Article  CAS  Google Scholar 

  40. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  41. Hebeish A, Bayazeed A, El-Alfy E, Khalil M (1988) Starch/Starke 40:223

    Article  CAS  Google Scholar 

  42. Huang Y-L, Tien H-W, Ma C-CM., Yang S-Y Wu S-Y, Liu H-Y, Mai Y-W (2011) J Mater Chem 21:18236

    Article  CAS  Google Scholar 

  43. Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH (2013) J Colloid Interf Sci 401:148

    Article  CAS  Google Scholar 

  44. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    Article  CAS  Google Scholar 

  45. Ferrari AC (2007) Solid State Commun 143:47

    Article  CAS  Google Scholar 

  46. Zhang FB, Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL (2008) Adv Mater 20:4490

    Article  Google Scholar 

  47. Tasis D, Papagelis K, Prato M, Kallitsis I (2007) Macromol Rapid Commun 28:1553

    Article  CAS  Google Scholar 

  48. Parambhath VB, Nagar R, Ramaprabhu S (2012) Langmuir 28:7826

    Article  CAS  Google Scholar 

  49. Wang G, Yang Z, Li X, Li C (2005) Carbon 43:2564

    Article  CAS  Google Scholar 

  50. Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JD (2009) Langmuir 25:5957

    Article  CAS  Google Scholar 

  51. Sun S, Wu P (2011) J Mater Chem 21:4095

    Article  CAS  Google Scholar 

  52. Yang MH (2002) J Appl Polym Sci 86:1540

    Article  CAS  Google Scholar 

  53. Ke Y, Wang YJ, Ren L, Wu G, Xue W (2010) J Appl Polym Sci 118:390

    Article  CAS  Google Scholar 

  54. Remediakis IN, Lopez N, Norskov JK (2005) Angew Chem Int Ed 44:1824

    Article  CAS  Google Scholar 

  55. Santra AK, Yang F, Goodman DW (2004) Surf Sci 548:324

    Article  CAS  Google Scholar 

  56. Ren L, Yang F, Li Y, Liu T, Zhang L, Ning G, Liu Z, Gao J, Xu C, (2014) RSC Adv 4:26804

    Article  CAS  Google Scholar 

  57. Putta C, Sharavath V, Sarkar S, Ghosh S (2015) RSC Adv 5:6652

    Article  CAS  Google Scholar 

  58. Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2012) ACS Catal 2:145

    Article  CAS  Google Scholar 

  59. Niu J, Liu M, Wang P, Long Y, Xie M, Li R, Ma J (2014) New J Chem 38:1471

    Article  CAS  Google Scholar 

  60. Shendage SS, Patil BU, Nagarkar MJ (2013) Tetrahedron Lett 54:3457

    Article  CAS  Google Scholar 

  61. Ba C, Zhao Q, Li Y, Zhang G, Zhang F, Fan X (2014) Catal Lett 144:1617

    Article  Google Scholar 

  62. Nandurkar NS, Bhange BM (2008) Tetrahedron 64:3655

    Article  CAS  Google Scholar 

  63. Riggleman S, DeShong P (2003) J Org Chem 68:8106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Research Council of the University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, H., Rahmani, O. Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water. Catal Lett 146, 2292–2305 (2016). https://doi.org/10.1007/s10562-016-1851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-016-1851-1

Keywords

Navigation