Catalysis Letters

, Volume 146, Issue 11, pp 2292–2305 | Cite as

Polyacrylamide-g-Reduced Graphene Oxide Supported Pd Nanoparticles as a Highly Efficient Catalyst for Suzuki–Miyaura Reactions in Water



To improve the dispersibility of graphene oxide (GO) in solvents, the grafting of polyacrylamide (PAM) from the GO surface was performed by redox polymerization system. The hydrophilic nature and high polarity of PAM have made effective dispersion of GO. Then, Pd nanoparticles (Pd NPs) were anchored on the surface of polyacrylamide grafted reduced graphene oxide nanosheets (PAM-g-rGO/Pd). The obtained nanocomposite was used for Suzuki–Miyaura cross-coupling reaction in an environmental friendly solvent under ambient conditions. The results showed that the prepared catalyst system exhibited high catalytic activity and stability which could be reused at least eight times without significant loss of its catalytic activity. This is mainly because of its small particle size, uniform dispersion of Pd NPs on the surface of PAM-g-GO/Pd, and lack of agglomeration of these nanoparticles during the preparation at room temperature.

Graphical Abstract


Graphene Graphene oxide Polyacrylamide Pd nanoparticles Suzuki–Miyaura reaction 



We are thankful to the Research Council of the University of Tehran.


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385CrossRefGoogle Scholar
  3. 3.
    Machado BF, Philippe S (2012) Catal Sci Technol 2:54CrossRefGoogle Scholar
  4. 4.
    Gao L, Yue W, Tao S, Fan L (2013) Langmuir 29:957CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906CrossRefGoogle Scholar
  6. 6.
    Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Prog Mater Sci 57:1061CrossRefGoogle Scholar
  7. 7.
    Bielawski CV, Dreyer DR, Park S, Ruoff RS (2010) Chem Soc Rev 39:228CrossRefGoogle Scholar
  8. 8.
    Jiang K, Ye CN, Zhang PP, Wang XS, Zhao YL (2012) Macromolecules 45Google Scholar
  9. 9.
    Lin Y, Jin J, Song M (2011) J Mater Chem 21:3455CrossRefGoogle Scholar
  10. 10.
    Deng Y, Li YJ, Dai J, Lang MD, Huang XY (2011) J Polym Sci Polym Chem 49:1582CrossRefGoogle Scholar
  11. 11.
    Kan L, Xu Z, Gao C (2011) Macromolecules 44:444CrossRefGoogle Scholar
  12. 12.
    Yuan W, Wang J, Shen T, Ren J (2013) Mater Lett 107:243CrossRefGoogle Scholar
  13. 13.
    Wang BD, Yang D, Zhang JZ, Xi CB, Hu JH (2011) J Phys Chem C 115:24636CrossRefGoogle Scholar
  14. 14.
    Degirmenci M, Hicri S, Yilmaz H (2008) Eur Polym J 44:3776CrossRefGoogle Scholar
  15. 15.
    Ramanathan T, Abdala AA, Stankovich S (2008) Nat Nanotechnol 3:327CrossRefGoogle Scholar
  16. 16.
    Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) Adv Funct Mater 20:3322CrossRefGoogle Scholar
  17. 17.
    Ma L, Yang X, Gao L, Lu M, Guo C, Li Y, Tu Y, Zhu X (2013) Carbon 53:269CrossRefGoogle Scholar
  18. 18.
    Wang B, Yang D, Zhang JZ, Xi C, Hu J (2011) J Phys Chem C 115:24636CrossRefGoogle Scholar
  19. 19.
    Balanta A, Godard C, Claver C (2011) Chem Soc Rev 40:4973CrossRefGoogle Scholar
  20. 20.
    Molnar A (2011) Chem Rev 111:2251CrossRefGoogle Scholar
  21. 21.
    Tamami B, Mohaghegh Nezhad M, Ghasemi S, Farjadian F (2013) J Org Chem 743:10CrossRefGoogle Scholar
  22. 22.
    Guan ZH, Hu JL, Gu YL, Zhang HJ, Li GX, Li T, (2012) Green Chem 14:1964CrossRefGoogle Scholar
  23. 23.
    Santra S, Hota PK, Bhattacharyya R, Bera P, Ghosh P, Mandal SK (2013) ACS Catal 3:2776CrossRefGoogle Scholar
  24. 24.
    Park G, Lee S, Son SJ, Shin S (2013) Green Chem 15:3468CrossRefGoogle Scholar
  25. 25.
    Chen W, Zhong, L-X, Peng X-W, Wang K, Chena Z-F, Sun R-C (2014) Catal Sci Technol 4:1426CrossRefGoogle Scholar
  26. 26.
    Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V Li H, Namboothiri INN, Doris E (2015) Catal Sci Technol 5:2388CrossRefGoogle Scholar
  27. 27.
    Deraedt C, Salmon L, Astruc D (2014) Adv Synth Catal 356:2525CrossRefGoogle Scholar
  28. 28.
    Kim H, Abdala AA, Macosko CW (2010) Macromolecules 43:6515CrossRefGoogle Scholar
  29. 29.
    Tamami B, Ghasemi S (2010) J Mol Catal A Chem 322:98CrossRefGoogle Scholar
  30. 30.
    Golubeva ND, Dyusenalin BK Selenovab BS, Pomogailo SI, Zharmagambetova AK, Dzhardimalieva GI, Pomogailo AD (2011) Kinet Catal 52:242CrossRefGoogle Scholar
  31. 31.
    Pan HB, Yen CH, Yoon B, Sato M, Wai CM (2006) Commun 36:3473Google Scholar
  32. 32.
    Sullivan JA, Flanagan AF, Hain H (2009) Catal Today 145:108CrossRefGoogle Scholar
  33. 33.
    Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF (2013) J Mater Chem A 1:12909CrossRefGoogle Scholar
  34. 34.
    Gao S, Shang N, Feng C, Wang C, Wang Z (2014) RSC Adv 4:39242CrossRefGoogle Scholar
  35. 35.
    Yamamoto S-I, Kinoshita H, Hashimotob H, Nishin Y (2014) Nanoscale 6:6501CrossRefGoogle Scholar
  36. 36.
    Hoseini SJ, Dehghani M, Nasrabadi H (2014) Catal Sci Technol 4:1078CrossRefGoogle Scholar
  37. 37.
    Putta C, Sharavath V, Sarkara S, Ghosh S (2015) RSC Adv 5:6652CrossRefGoogle Scholar
  38. 38.
    He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S (2014) Carbon 66:312CrossRefGoogle Scholar
  39. 39.
    Lee KH, Han S-W, Kwon K-Y, Park JB (2013) J Colloid Interf Sci 403:127CrossRefGoogle Scholar
  40. 40.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  41. 41.
    Hebeish A, Bayazeed A, El-Alfy E, Khalil M (1988) Starch/Starke 40:223CrossRefGoogle Scholar
  42. 42.
    Huang Y-L, Tien H-W, Ma C-CM., Yang S-Y Wu S-Y, Liu H-Y, Mai Y-W (2011) J Mater Chem 21:18236CrossRefGoogle Scholar
  43. 43.
    Shanmugharaj AM, Yoon JH, Yang WJ, Ryu SH (2013) J Colloid Interf Sci 401:148CrossRefGoogle Scholar
  44. 44.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558CrossRefGoogle Scholar
  45. 45.
    Ferrari AC (2007) Solid State Commun 143:47CrossRefGoogle Scholar
  46. 46.
    Zhang FB, Fan XB, Peng WC, Li Y, Li XY, Wang SL, Zhang GL (2008) Adv Mater 20:4490CrossRefGoogle Scholar
  47. 47.
    Tasis D, Papagelis K, Prato M, Kallitsis I (2007) Macromol Rapid Commun 28:1553CrossRefGoogle Scholar
  48. 48.
    Parambhath VB, Nagar R, Ramaprabhu S (2012) Langmuir 28:7826CrossRefGoogle Scholar
  49. 49.
    Wang G, Yang Z, Li X, Li C (2005) Carbon 43:2564CrossRefGoogle Scholar
  50. 50.
    Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JD (2009) Langmuir 25:5957CrossRefGoogle Scholar
  51. 51.
    Sun S, Wu P (2011) J Mater Chem 21:4095CrossRefGoogle Scholar
  52. 52.
    Yang MH (2002) J Appl Polym Sci 86:1540CrossRefGoogle Scholar
  53. 53.
    Ke Y, Wang YJ, Ren L, Wu G, Xue W (2010) J Appl Polym Sci 118:390CrossRefGoogle Scholar
  54. 54.
    Remediakis IN, Lopez N, Norskov JK (2005) Angew Chem Int Ed 44:1824CrossRefGoogle Scholar
  55. 55.
    Santra AK, Yang F, Goodman DW (2004) Surf Sci 548:324CrossRefGoogle Scholar
  56. 56.
    Ren L, Yang F, Li Y, Liu T, Zhang L, Ning G, Liu Z, Gao J, Xu C, (2014) RSC Adv 4:26804CrossRefGoogle Scholar
  57. 57.
    Putta C, Sharavath V, Sarkar S, Ghosh S (2015) RSC Adv 5:6652CrossRefGoogle Scholar
  58. 58.
    Moussa S, Siamaki AR, Gupton BF, El-Shall MS (2012) ACS Catal 2:145CrossRefGoogle Scholar
  59. 59.
    Niu J, Liu M, Wang P, Long Y, Xie M, Li R, Ma J (2014) New J Chem 38:1471CrossRefGoogle Scholar
  60. 60.
    Shendage SS, Patil BU, Nagarkar MJ (2013) Tetrahedron Lett 54:3457CrossRefGoogle Scholar
  61. 61.
    Ba C, Zhao Q, Li Y, Zhang G, Zhang F, Fan X (2014) Catal Lett 144:1617CrossRefGoogle Scholar
  62. 62.
    Nandurkar NS, Bhange BM (2008) Tetrahedron 64:3655CrossRefGoogle Scholar
  63. 63.
    Riggleman S, DeShong P (2003) J Org Chem 68:8106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Chemistry, University College of ScienceUniversity of TehranTehranIran

Personalised recommendations