Catalysis Letters

, Volume 146, Issue 10, pp 1934–1942 | Cite as

Preparation of NiAlO x and NiSiO x Complex Oxides with High Surface Areas for the Isomerization Reactions of 1-Hexene

  • Yu Zhao
  • Junen Wang
  • Guoxia Song
  • Xiaocong Tian
  • Jianyi Shen


The NiAlO x and NiSiO x complex oxides with high surface areas were prepared by the co-precipitation method through the control of acidity of solutions. Nickel species were found to be highly dispersed in these complex oxides and a remarkable feature was that the incorporation of large amount of nickel cations into SiO2 generated the great amount of surface acid sites. Upon the sulfidation by CS2, the sulfided catalysts were found to be highly active for the conversion of 1-hexene to different products formed from the three main competitive reactions (skeletal isomerization, double bond isomerization and hydrogenation of all hexenes). The high yield of skeletal isomerization of 1-hexene on a sulfided NiSiO x (55 %) could be attributed to the high density of acid sites for the adsorption of 1-hexene as well as the low hydrogenation activity of nickel species on this catalyst. In contrast, the high yields of direct hydrogenation and double bond isomerization of 1-hexene on the sulfided NiAlO x might be due to the high hydrogenation activity of nickel species as well as the surface acidity and basicity on the catalyst.

Graphical Abstract

The sulfided NiAlO x and NiSiO x complex oxides were highly active for the conversion of 1-hexene to different products. The high yield of skeletal isomerization of 1-hexene on the sulfided NS10 (55 %) could be attributed to the high density of acid sites for the adsorption of 1-hexene.


NiAlOx complex oxides NiSiOx complex oxides Sulfided catalysts Surface acidity and basicity Isomerization of 1-hexene 



Financial supports from NSFC (21273105 and 21203081), MSTC (2013AA031703), NSFJC (BK20140596) and the fundamental research funds for central universities are acknowledged.


  1. 1.
    Rao YX, Kang JJ, Antonelli D (2008) J Am Chem Soc 130:394–395CrossRefGoogle Scholar
  2. 2.
    Kishore D, Kannan S (2004) J Mol Catal A 223:225–230CrossRefGoogle Scholar
  3. 3.
    Reddy MR, Periasamy MJ (1995) Organomet Chem 491:263–266CrossRefGoogle Scholar
  4. 4.
    López CM, Ramírez L, Sazo V, Escobar V (2008) Appl Catal A 340:1–6CrossRefGoogle Scholar
  5. 5.
    Zhao Y, Wang J, Chen H, Zhang XY, Fu YC, Shen JY (2014) Chin J Catal 35:1402–1409CrossRefGoogle Scholar
  6. 6.
    Wu ZH, Wang QX, Xu LY, Xie SJ (2002) Stud Surf Sci Catal 142:747–754CrossRefGoogle Scholar
  7. 7.
    Eswaramoorthi I, Sundaramurthy V, Lingappan N (2001) Stud Surf Sci Catal 135:317CrossRefGoogle Scholar
  8. 8.
    Abbot J, Wojciechowski BW (1988) Can J Chem Eng 66:817–824CrossRefGoogle Scholar
  9. 9.
    Coleto I, Roldan R, Jimenez-Sanchidrian C, Gomez JP, Romero-Salguero FJ (2010) Catal Today 149:275–280CrossRefGoogle Scholar
  10. 10.
    Shi GJ, Fang DM, Shen JY (2009) Micropor Mesopor Mater 120:339–345CrossRefGoogle Scholar
  11. 11.
    Shi GJ, Shen JY (2009) Energy Fuels 23:320–326CrossRefGoogle Scholar
  12. 12.
    Ninh TKT, Laurenti D, Leclerc E, Vrinat M (2014) Appl Catal A 487:210–218CrossRefGoogle Scholar
  13. 13.
    Keyvanloo K, Hecker WC, Woodfield BF, Bartholomew CH (2014) J Catal 319:220–231CrossRefGoogle Scholar
  14. 14.
    Mogica-Betancourt JC, López-Benítez A, Montiel-López JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) J Catal 313:9–23CrossRefGoogle Scholar
  15. 15.
    Wang DX, Wang X, Ma XL, Fillerup E, Song CS (2014) Catal Today 233:100–107CrossRefGoogle Scholar
  16. 16.
    Xu CL, Du YQ, Li C, Yang J, Yang G (2015) Appl Catal B 164:334–343CrossRefGoogle Scholar
  17. 17.
    Klimova T, Vara MP, Lee IP (2010) Catal Today 150:171–178CrossRefGoogle Scholar
  18. 18.
    Baldovino-Medrano VG, Giraldo SA, Centeno A (2008) Fuel 87:1917–1926CrossRefGoogle Scholar
  19. 19.
    Zepeda TA (2008) Appl Catal A 347:148–161CrossRefGoogle Scholar
  20. 20.
    Yin CL, Zhao RY, Liu CG (2005) Fuel 84:701–706CrossRefGoogle Scholar
  21. 21.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  22. 22.
    Yang SF, Liang CH, Prins R (2006) J Catal 237:118–130CrossRefGoogle Scholar
  23. 23.
    Bang YJ, Park S, Han SJ, Yoo J, Song JH, Choi JH, Kang KH, Song IK (2016) Appl Catal B 180:179–188CrossRefGoogle Scholar
  24. 24.
    Halliche D, Cherifi O, Auroux A (2005) Thermochim Acta 434:125–131CrossRefGoogle Scholar
  25. 25.
    Tu M, Shen JY, Chen Y (1997) J Solid State Chem 128:73–79CrossRefGoogle Scholar
  26. 26.
    Shen JY, Lochhead MJ, Bray KL, Chen Y, Dumesic JA (1995) J Phys Chem 99:2384–2392CrossRefGoogle Scholar
  27. 27.
    Ge X, Zou H, Shen JY (2003) Chin J Inorg Chem 19:1266–1268Google Scholar
  28. 28.
    Saxena SK, Viswanadham N, Garg MO (2013) Fuel 107:432–438CrossRefGoogle Scholar
  29. 29.
    Shen JY, Auroux A (2004) Stud Surf Sci Catal 149:35–70CrossRefGoogle Scholar
  30. 30.
    Wulfers MJ, Jentoft FC (2013) J Catal 307:204–213CrossRefGoogle Scholar
  31. 31.
    Sharma SK, Parikh PA, Jasra RV (2010) J Mol Catal A 317:27–33CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yu Zhao
    • 1
  • Junen Wang
    • 2
  • Guoxia Song
    • 2
  • Xiaocong Tian
    • 2
  • Jianyi Shen
    • 1
    • 2
  1. 1.School of Chemical EngineeringHuaiyin Institute of TechnologyHuai’anPeople’s Republic of China
  2. 2.Lab of Mesoscopic Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations