Advertisement

Catalysis Letters

, Volume 146, Issue 10, pp 2165–2172 | Cite as

Magnetic Silica Bonding Perfluoroalkylsulfonylimide as Reusable Brønsted Acid Catalysts for Cellobiose Hydrolysis

  • Meng Chen
  • Li You
  • Haijuan Zhang
  • Zhong-Hua Ma
Article
  • 187 Downloads

Abstract

New Brønsted solid acid, magnetic silica-supported perfluoroalkylsulfonylimide group was prepared. The as-synthesized functional siloxane oligomer was used to introduce perfluoroalkylsulfonylimide onto the magnetic core under the assist of TEOS, forming multi-layer core–shell structure, which was confirmed by TEM. The inner silica shell protected the acid-sensitive magnetic core from the corrosion of the strong acid; while the outer silica shell attached acid perfluoroalkylsulfonylimide groups. Good thermal stability (<229 °C) was expectable for the materials by TG analysis. The conclusive acid loadings of 0.61–0.69 mmol/g endowed the materials with efficient catalytic ability for the conversion of cellobiose to glucose (Glu), providing stable 85–91 % Glu yields throughout 3–4 cycles in water at 130 °C.

Graphical Abstract

Keywords

Perfluoroualkylsulfonylimide Magnetic solid acid Cellobiose Hydrolysis 

Notes

Acknowledgments

We gratefully acknowledge the National Science Foundation of China (No. 21172083) and the Fundamental Research Funds for the Central Universities (No. 2662015PY060).

References

  1. 1.
    Harmer MA, Farneth WE, Sun Q (1996) J Am Chem Soc 118:7708–7715CrossRefGoogle Scholar
  2. 2.
    Melero JA, Grieken RV, Morales G (2006) Chem Rev 106:3790–3812CrossRefGoogle Scholar
  3. 3.
    Yang Q, Liu J, Zhang L, Li C (2009) J Mater Chem 19:1945–1955CrossRefGoogle Scholar
  4. 4.
    Rossi LM, Costa NJS, Silva FP, Wojcieszak R (2014) Green Chem 16:2906–2933CrossRefGoogle Scholar
  5. 5.
    Lai D-M, Deng L, Guo Q-X, Fu Y (2011) Energy Environ Sci 4:3552–3557CrossRefGoogle Scholar
  6. 6.
    Lai D-M, Deng L, Li J, Liao B, Guo Q-X, Fu Y (2011) ChemSusChem 4:55–58CrossRefGoogle Scholar
  7. 7.
    Liang X (2015) Chem Eng J 264:251–257CrossRefGoogle Scholar
  8. 8.
    Liu R-L, Gao X-Y, An L, Ma J, Zhang JF, Zhang Z-Q (2015) RSC Adv 5:93858–93866CrossRefGoogle Scholar
  9. 9.
    Thombal RS, Jadhav VH (2016) RSC Adv 6:30846–30851CrossRefGoogle Scholar
  10. 10.
    Naeimi H, Mohamadabadi S (2014) Dalton Trans 43:12967–12973CrossRefGoogle Scholar
  11. 11.
    Kassaee MZ, Masrouri H, Movahedi F (2011) Appl Catal A 395:28–33CrossRefGoogle Scholar
  12. 12.
    Safari J, Zarnegar Z (2013) Ultrason Sonochem 20:740–746CrossRefGoogle Scholar
  13. 13.
    Wang P, Kong A, Wang WJ, Zhu HY, Shan YK (2010) Catal Lett 135:159–164CrossRefGoogle Scholar
  14. 14.
    Safari J, Javadian L (2015) RSC Adv 5:104973–104980CrossRefGoogle Scholar
  15. 15.
    Bamoniri A, Moshtael-Arani N (2015) RSC Adv 5:16911–16920CrossRefGoogle Scholar
  16. 16.
    Mobaraki A, Movassagh B, Karimi B (2014) ACS Comb Sci 16:352–358CrossRefGoogle Scholar
  17. 17.
    Pourjavadi A, Hosseini SH, Doulabi M, Fakoorpoor SM, Seidi F (2012) ACS Catal 2:1259–1266CrossRefGoogle Scholar
  18. 18.
    Wu Z, Chen C, Wang L, Wan H, Guan G (2016) Ind Eng Chem Res 55:1833–1842CrossRefGoogle Scholar
  19. 19.
    Bootsma JA, Entorf M, Eder J, Shanks BH (2008) Bioresour Technol 99:5226–5231CrossRefGoogle Scholar
  20. 20.
    Bootsma JA, Shanks BH (2007) Appl Catal A 327:44–51CrossRefGoogle Scholar
  21. 21.
    Takagaki A, Nishimura M, Nishimura S, Ebitani K (2011) Chem Lett 40:1195–1197CrossRefGoogle Scholar
  22. 22.
    Degirmenci V, Uner D, Cinlar B, Shanks BH, Yilmaz A, RaV S, Hensen EJM (2010) Catal Lett 141:33–42CrossRefGoogle Scholar
  23. 23.
    Pñna L, Ikenberry M, Ware B, Hohn KL, Boyle D, Sun XS, Wang D (2011) Biotechnol Bioprocess Eng 16:1214–1222CrossRefGoogle Scholar
  24. 24.
    Xiong H, Pham HN, Datye AK (2014) Green Chem 16:4627–4643CrossRefGoogle Scholar
  25. 25.
    Wang X-P, Zhang H-J, Ma J-Z, Ma Z-H (2016) RSC Adv 6:43152–43158CrossRefGoogle Scholar
  26. 26.
    Delidovich I, Palkovits I (2016) Microporous Mesoporous Mater 219:317–321CrossRefGoogle Scholar
  27. 27.
    Desmarteau DD (2000) Science 289:72CrossRefGoogle Scholar
  28. 28.
    Ma Z-H, Yang Q-H, Ma J-Z (2012) Acta Chim Sinica 70:311–317CrossRefGoogle Scholar
  29. 29.
    Yang Q-H, Ma Z-H, Ma J-Z, Nie J (2013) Micropor Mesopor Mater 172:51–60CrossRefGoogle Scholar
  30. 30.
    He M-L, Xu J, Ma Z-H, Yuan H, Ma J-Z (2015) Micropor Mesopor Mater 211:30–37CrossRefGoogle Scholar
  31. 31.
    Leito I, Raamat E, Kütt A, Saame J, Kipper K, Koppel IA, Koppel I, Zhang M, Mishima M, Yagupolskii LM, Garlyauskayte RY, Filatov AA (2009) J Phys Chem A 113:8421–8424CrossRefGoogle Scholar
  32. 32.
    Barham D, Trinder P (1972) Analyst 97:142–145CrossRefGoogle Scholar
  33. 33.
    Zhang W, Chi Z-X, Mao W-X, Lv R-W, Cao A-M, Wan L-J (2014) Angew Chem Int Ed 53:12776–12780CrossRefGoogle Scholar
  34. 34.
    Ma Z-H, He M, Zhang H, Ma J, Yuan H (2014) Chin J Org Chem 34:2255–2261CrossRefGoogle Scholar
  35. 35.
    Pierre G (2012) Chem Soc Rev 41:1538–1558CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Meng Chen
    • 1
  • Li You
    • 1
  • Haijuan Zhang
    • 1
  • Zhong-Hua Ma
    • 1
  1. 1.Department of Chemistry, College of SciencesHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations