Catalysis Letters

, Volume 146, Issue 10, pp 1956–1964 | Cite as

Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3

  • Wang Zhang
  • Yong Shi
  • Chunyan Li
  • Qidong Zhao
  • Xinyong Li


In this study, we have successfully synthesized bimetallic MOFs of MIL-100(Fe-Mn) for SCR of NOx with NH3 via a hydrothermal method The catalyst were characterized by XRD, EDX, N2 adsorption(BET), SEM, in situ FT-IR and XPS. MIL-100(Fe-Mn) catalyst exhibited higher NOx conversion than either of its monometallic counterparts of MIL-100(Fe) and MIL-100(Mn). MIL-100(Fe-Mn) displayed excellent low-temperature activity, which achieved a maximum NOx conversion of 96 % at 260 °C. Moreover, MIL-100(Fe-Mn) showed a satisfactory stability and a good capacity of resisting SO2 and H2O. During NH3-SCR process, a slightly raised NO x conversion (approximately 7 %) was observed in the presence of H2O and SO2, which could be attributed to the formed sulfate species that act as new acid sites on the surface of the catalyst. Combined with the in situ FT-IR results, it was concluded that the SCR reaction of the MIL-100(Fe-Mn) followed Eley–Rideal (E–R) mechanism.

Graphical Abstract

Schematic diagram of SCR reaction


Environmental catalysis Activity Porous materials Metal–organic framework Heterogeneous catalysis MIL-100(Fe-Mn) Selective catalytic reduction 



This work is supported by the National Basic Research Program of China (No. 2011CB936002), National Natural Science Foundation of China (No. 51178076) and the Fundamental Research Funds for the Central Universities (No. DUT14LK17).


  1. 1.
    Shi XY, Liu FD, Xie LJ, Shan WP, He H (2013) Environ Sci Technol 47:3293CrossRefGoogle Scholar
  2. 2.
    Chen L, Li JH, Ge MF (2010) Environ Sci Technol 44:9590CrossRefGoogle Scholar
  3. 3.
    Jiang BQ, Deng BY, Zhang ZQ et al (2014) J Phy Chem C 118:14866CrossRefGoogle Scholar
  4. 4.
    Jin RB, Liu Y, Wang Y et al (2014) Appl Catal B 148:582CrossRefGoogle Scholar
  5. 5.
    Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Appl Catal B 110:71CrossRefGoogle Scholar
  6. 6.
    Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SBT, Hupp JT (2009) Chem Soc Rev 38:1450CrossRefGoogle Scholar
  7. 7.
    Zhang M, Guan J, Zhang B, D Williams Su, Liang C (2012) Catal Lett 142:313CrossRefGoogle Scholar
  8. 8.
    Stock N, Biswas S (2012) Chem Rev 112:933CrossRefGoogle Scholar
  9. 9.
    Wang P, Zhao H, Sun H, Yu H, Quan X (2014) RSC Adv 4: 48912CrossRefGoogle Scholar
  10. 10.
    Petit C, Bandosz TJ (2011) Adv Funct Mater 21:2108CrossRefGoogle Scholar
  11. 11.
    Wuttke S, Bazin P, Vimont A, Serre C, Seo Y, Hwang YK, Chang J et al (2012) Chem Eur J 18:11959CrossRefGoogle Scholar
  12. 12.
    Han S, Huang Y G, Taku. W et al (2013) Micro Meso Mater 173:86CrossRefGoogle Scholar
  13. 13.
    Tan FC, Liu M, Li KY et al (2015) Chem Eng J 281:360CrossRefGoogle Scholar
  14. 14.
    Song X, Oh M, Lah MS (2013) Inorg Chem 52:10869CrossRefGoogle Scholar
  15. 15.
    Qu ZP, Miao L, Wang H, Fu Q (2015) Chem Commun 51:956CrossRefGoogle Scholar
  16. 16.
    Reinsch H, Stock N (2013) Cryst Eng Comm 15: 544CrossRefGoogle Scholar
  17. 17.
    Bukhtiyarova MV, Ivanova AS, Plyasova LM et al (2009) Appl Catal A 357:193CrossRefGoogle Scholar
  18. 18.
    Yang SJ, Wang CZ, Ma L et al (2013) Catal Sci Technol 3:161CrossRefGoogle Scholar
  19. 19.
    Yang SJ, Yan NQ, Guo YF et al (2011) Environ.Sci.Thchnol 45:540CrossRefGoogle Scholar
  20. 20.
    Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Appl.CataB 110:71CrossRefGoogle Scholar
  21. 21.
    Wang CZ., Yang SJ, Chang HZ, Yue P, Li JH (2013) J Mol Catal A Chem 376:13CrossRefGoogle Scholar
  22. 22.
    Yamaguchi T, Jin T, Tanabe K J (1986) Phy Chem 90:3148CrossRefGoogle Scholar
  23. 23.
    Vu TA, Le GH, Dao CD et al (2014) RSC Adv 4:41185CrossRefGoogle Scholar
  24. 24.
    Yue P, Li KZ, Li JH (2013) Appl Catal B: Environ 140–141:483Google Scholar
  25. 25.
    Jiang BQ, Deng BY, Zhang ZQ, Wu ZL (2014) J Phys Chem C 118:14866CrossRefGoogle Scholar
  26. 26.
    Jiang BQ, Li ZG, Lee S (2013) Chem Eng J 225:52CrossRefGoogle Scholar
  27. 27.
    Qi GS, Yang RT, Chang R (2004) Appl Catal B 51:93CrossRefGoogle Scholar
  28. 28.
    Wu ZB, Jiang BQ, Liu Y, Wang HQ, Jin RB (2007) Environ Sci Technol 41:5812CrossRefGoogle Scholar
  29. 29.
    Liu ZM, Zhu JZ, Li JH, Ma L, woo S (2014) ACS Appl Mater Interfaces 6:14500CrossRefGoogle Scholar
  30. 30.
    Anstrom M, Topsoe NY, Dumesic JA (2003) J Catal 213:115CrossRefGoogle Scholar
  31. 31.
    Machidam, Uto M, Kurogid et al (2001) J. Mater Chem 11:900CrossRefGoogle Scholar
  32. 32.
    Yeom YH, Wen B, Sachtler WMH, Weitz E.(2004) J Phys Chem B 108:5386CrossRefGoogle Scholar
  33. 33.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1CrossRefGoogle Scholar
  34. 34.
    Horike S, Dinca M, Tamaki K et al (2008) J ACS 130: 5854Google Scholar
  35. 35.
    Karami A, Salehi V (2012) J Catal 292: 32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Wang Zhang
    • 1
  • Yong Shi
    • 1
  • Chunyan Li
    • 2
  • Qidong Zhao
    • 1
  • Xinyong Li
    • 1
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering and Key Laboratory of Fine Chemicals, School of Environmental Sciences and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of MaterialsDalian University of TechnologyDalianChina

Personalised recommendations