Catalysis Letters

, Volume 146, Issue 11, pp 2215–2220 | Cite as

In Situ ATR-FTIR Investigation of Photodegradation of 3,4-Dihydroxybenzoic Acid on TiO2



The catalytic photo-oxidation of 3,4-dihydroxybenzoic acid on TiO2 has been studied by in situ ATR-FTIR in flowing water and in flowing wet air/nitrogen gas. In flowing water it was difficult to observe photodegradation intermediates despite photocatalytic action during UV illumination. In the flowing wet air/nitrogen system carboxylic acids and carbonates were observed. It was shown that water plays an important role in the formation of oxidation active species. Oxygen shows a prominent role for carboxylic acid degradation, but the photogenerated hole plays the important role for the 3,4-dihydroxybenzoic acid ring cleavage.

Graphical Abstract


In situ spectroscopy Photocatalysis Attenuated total reflection TiO2 3,4-dihydroxybenzoic acid 



The generous financial support by the National Science Foundation of China (nos. 41076040 and 41230858) is gratefully acknowledged.


  1. 1.
    Nath RK, Zain MFM, Jamil M (2016) Renew Sust Energ Rev 62:1184CrossRefGoogle Scholar
  2. 2.
    Zhang W, Jia BP, Wang QZ, Dionysiou DD (2015) J Nanopart Res 17:221CrossRefGoogle Scholar
  3. 3.
    Powell MJ, Quesada-Cabrera R, Taylor A, Teixeira D, Papakonstantinou I, Palgrave RG, Sankar G, Parkin IP (2016) Chem Mater 28:1369CrossRefGoogle Scholar
  4. 4.
    Bhatkhande DS, Pangarkar VG, Beenackers AACM (2001) J Chem Technol Biotechnol 77:102CrossRefGoogle Scholar
  5. 5.
    Ji HH, Chang F, Hu XF, Qin W, Shen JW (2013) Chem Eng J 218:183CrossRefGoogle Scholar
  6. 6.
    Pang XB, Chang W, Chen CC, Ji HW, Ma WH, Zhao JC (2014) J Am Chem Soc 136:8714CrossRefGoogle Scholar
  7. 7.
    Hu XF, Buergi T (2012) Appl Catal A 449:139CrossRefGoogle Scholar
  8. 8.
    Dolamic I, Buergi T (2007) J Catal 248:268CrossRefGoogle Scholar
  9. 9.
    Borah JM, Sarma J, Mahiuddin S, Colloid Surf A 387:50Google Scholar
  10. 10.
    Araujo PZ, Morando PJ, Blesa MA (2005) Langmuir 21:3470CrossRefGoogle Scholar
  11. 11.
    Guan XH, Shang C, Chen GH (2006) Chemosphere 65:2074CrossRefGoogle Scholar
  12. 12.
    Qin L, Shi WP, Liu WF, Yang YZ, Liu XG, Xu BS (2016) RSC Adv 6:12504CrossRefGoogle Scholar
  13. 13.
    Dobson KD, McQuillan AJ (1997) Langmuir 13:3392CrossRefGoogle Scholar
  14. 14.
    Sheng H, Zhang HN, Song WJ, Ji HW, Ma WH, Chen CC, Zhao JC (2015) Angew Chem Int Ed 54:5905CrossRefGoogle Scholar
  15. 15.
    Yang J, Dai J, Chen CC, Zhao JC (2009) J Photochem Photobiol A 208:66CrossRefGoogle Scholar
  16. 16.
    Subramanian V, Pangarkar VG, Beenackers AACM (2000) Clean Prod Process 2:149CrossRefGoogle Scholar
  17. 17.
    Hay MB, Myneni SCB (2007) Geochim Cosmochim Acta 71:3518CrossRefGoogle Scholar
  18. 18.
    Guo YG, Lou XY, Xiao DX, Xu L, Wang ZH, Liu JS (2012) J Hazard Mater 241–242:301CrossRefGoogle Scholar
  19. 19.
    Yuan R, Ramjaun NS, Wang Z, Liu J (2012) Chem Eng J 192:171CrossRefGoogle Scholar
  20. 20.
    Hug SJ, Sulzberger B (1994) Langmuir 10:3587CrossRefGoogle Scholar
  21. 21.
    Araujo PZ, Mendive CB, Garcia Rodenas LA, Morando PJ, Regazzoni AE, Blesa MA, Bahnemann D (2005) Colloid Surf A 265:73.CrossRefGoogle Scholar
  22. 22.
    Mino L, Zecchina A, Martra G, Rossi AM, Spoto G (2016) Appl Catal B 196:135CrossRefGoogle Scholar
  23. 23.
    Ojamae L, Aulin C, Pedersen H, Kall P (2006) J Colloid Interface Sci 296:71CrossRefGoogle Scholar
  24. 24.
    Kubicki JD, Schroeter LM, Itoh MJ, Nguyen BN, Apitz SE (1999) Geochim Cosmochim Acta 63:2709CrossRefGoogle Scholar
  25. 25.
    Lin G, Reid G, Bugg TDH (2001) J Am Chem Soc 123:5030CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiPeople’s Republic of China
  2. 2.Département de Chimie PhysiqueUniversité de GenèveGenève 4Switzerland

Personalised recommendations