Catalysis Letters

, Volume 146, Issue 10, pp 1910–1916 | Cite as

Degradation of Polystyrene Using Base Modified Mesoporous Molecular Sieves K2O/BaO-SBA-15 as Catalysts

  • Xin Liu
  • Lu Li
  • Xiuyan Song
  • Fusheng Liu
  • Shitao Yu
  • Xiaoping Ge


Mesoporous BaO-SBA-15 was directly synthesized in hydrothermal system, and then K2O/BaO-SBA-15 materials were synthesized by impregnating BaO-SBA-15 in different concentration KNO3 aqueous solution. The obtained materials were characterized by XRD, FT-IR, N2 adsorption/desorption and CO2-TPD. The results indicated that K2O/BaO-SBA-15 was of typical mesoporous structure and the long range order, and the introduction of K species improved the basicity of mesoporous material. The synthesized mesoporous materials were used as catalysts in the degradation of polystyrene (PS) and among them, 9 % K2O/BaO-SBA-15 exhibited the highest catalytic performance. Under the optimum conditions, the conversion of PS was 95.8 wt.% and the yield of styrene monomer could reach 85.0 wt.%. Furthermore, the stability of catalyst was investigated. The results showed that the catalyst was of excellent catalytic stability, there were less decreases in PS conversion and liquid product yield after six successive cycles of the catalyst.

Graphical Abstract


Base modified SBA-15 Polystyrene Recycling Degradation Styrene monomer 



This research was supported financially by the National Natural Science Foundation of China (No. 21176130), Taishan Scholar Program of Shandong and Natural Science Foundation of Shandong Province (No. ZR2015BM029).

Supplementary material

10562_2016_1832_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 67 KB)


  1. 1.
    Ahmad Z, Al-Sagheer F, Al-Awadi NA (2010) JA nal Appl Pyrol 87:99CrossRefGoogle Scholar
  2. 2.
    Chauhan RS, Gopinath S, Razdan P, Delattre C, Nirmala GS, Natarajan R (2008) Waste Manage 28:2140CrossRefGoogle Scholar
  3. 3.
    Chumbhale VR, Kim JS, Lee SB, Choi MJ (2004) J Mol Catal A-Chem 222:133CrossRefGoogle Scholar
  4. 4.
    Richard GM, Mario M, Javier T, Susana T (2011) Resour Conserv Recy 55:472CrossRefGoogle Scholar
  5. 5.
    Kim S (2013) R&D strategy of HCI technology for aging. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  6. 6.
    Marczewski M, Kamińska E, Marczewska H, Godek M, Rokicki G, Sokołowski J (2013) Appl Catal B-Environ 129:236CrossRefGoogle Scholar
  7. 7.
    Kim J S, Lee S H, Jin T E (2003) Effect of plasticity on fatigue life of welded nuclear component with local brittle zone. In: ASME 2003 Pressure vessels and piping conference, pp 59Google Scholar
  8. 8.
    Hussain Z, Khan KM, Basheer N, Hussain K (2011) Janal Appl Pyrol 90:53CrossRefGoogle Scholar
  9. 9.
    Ukei H, Hirose T, Horikawa S, Takai Y, Taka M, Azuma N (2000) Catal Today 62:67CrossRefGoogle Scholar
  10. 10.
    Kim JS, Lee WY, Lee SB, Kim SB, Choi MJ (2003) Catal Today 87:59CrossRefGoogle Scholar
  11. 11.
    Tiwary P, Guria C (2010) J Polym Environ 18:298CrossRefGoogle Scholar
  12. 12.
    Woo O S, Ayala N, Broadbelt L J (2000) Catal Today 55:161CrossRefGoogle Scholar
  13. 13.
    Lee SY, Yoon JH, Kim JR, Park DW (2002) J Anal Appl Pyrol 64:71CrossRefGoogle Scholar
  14. 14.
    Lee KH (2008) Polym Degrad Stabil 93:1284CrossRefGoogle Scholar
  15. 15.
    Karmore V, Madras G (2002) Ind Eng Chem Res 41:657CrossRefGoogle Scholar
  16. 16.
    Marcilla A, Garcı´a-Quesada JC, Sa´nchez S, Ruiz R (2005) J Anal Appl Pyrol 74:387CrossRefGoogle Scholar
  17. 17.
    Hussain Z, Khan KM, Hussain K (2010) Janal Appl Pyrol 89:39CrossRefGoogle Scholar
  18. 18.
    Xi G, Rui L, Tang Q, Li J 1999 J Appl Polym Sci 73:1139CrossRefGoogle Scholar
  19. 19.
    Adnan JS, Jan MR (2014) Janal Appl Pyrol 109:196CrossRefGoogle Scholar
  20. 20.
    Adnan JS, Jan MR (2015) J Ind Eng Chem 114:163Google Scholar
  21. 21.
    Ramli A, Bakar DRA (2011) J Appl Sci 11:1346CrossRefGoogle Scholar
  22. 22.
    Shah J, Jan M R, Adnan (2014) J Ind Eng Chem 20:3604CrossRefGoogle Scholar
  23. 23.
    Marcilla A, Gómez-Siurana A, Berenguer D (2006) Appl Catal A-Gen 301:222CrossRefGoogle Scholar
  24. 24.
    Xie C, Liu F, Yu S, Xie F, Li L, Zhang S (2008) Catal Commun 9:1132CrossRefGoogle Scholar
  25. 25.
    Marcilla A, Gómez A (2007) Polym Degrad Stabil 92:1867CrossRefGoogle Scholar
  26. 26.
    Marcilla A, Gómez-Siurana A, Quesada JCG, Berenguer D (2009) J Anal Appl Pyrol 85:327CrossRefGoogle Scholar
  27. 27.
    Fulvio P F, Pikus S, Jaroniec M (2005) J Mater Chem 15:5049CrossRefGoogle Scholar
  28. 28.
    Rayo P, Ramírez J, Rana MS, Ancheyta J, Aguilar-Elguézabal A (2008) Ind Eng Chem Res 48:1242CrossRefGoogle Scholar
  29. 29.
    Chen S Y, Jang L Y, Cheng S (2004) Chem Mat 16:4174CrossRefGoogle Scholar
  30. 30.
    Biswas P, Narayanasarma P, Kotikalapudi CM, Dalai AK, Adjaye J (2011) Ind Eng Chem Res 50:7882CrossRefGoogle Scholar
  31. 31.
    Zhao D, Feng J, Huo Q, Malosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefGoogle Scholar
  32. 32.
    Zheng X, Dong B, Yuan C, Zhang K, Wang X (2012) J Porous Mat 20:539–546CrossRefGoogle Scholar
  33. 33.
    Wei YL, Cao Y, Zhu JH, Yan XW (2003) Chinese J Inorg Chem 19:233Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xin Liu
    • 1
  • Lu Li
    • 1
  • Xiuyan Song
    • 1
  • Fusheng Liu
    • 1
  • Shitao Yu
    • 1
  • Xiaoping Ge
    • 1
  1. 1.College of Chemical EngineeringQingdao University of Science and TechnologyQingdaoChina

Personalised recommendations