Catalysis Letters

, Volume 146, Issue 10, pp 2053–2080 | Cite as

Modeling Ceria-Based Nanomaterials for Catalysis and Related Applications

  • Albert Bruix
  • Konstantin M. Neyman


Ceria (CeO2) is used as support material in heterogeneous catalysts since decades and, recently, ceria itself was also demonstrated to be catalytically active for some reactions. Atomistic and electronic structure details of the functioning of ceria in catalysis can nowadays be successfully uncovered with the help of computational modeling based on the density functional theory (DFT). Yet, the majority of such computational studies undertaken so far relied on extended models of surfaces, which are adequate for the description of surface science processes and phenomena, but neglect the nanostructured nature of ceria in many catalysts. This Perspective focuses on discussing DFT calculations of various nanostructured models of ceria and its composites relevant for catalysis. Pivotal consequences of ceria nanostructuring for its role in catalysts derived from the computational studies are documented and supported by experimental results. The presented case studies shed light on several actively debating issues of ceria usage in catalysis and other applications. For instance: What makes ceria nanoparticles in a certain size range dramatically more reactive in oxidative processes? Is the oxygen storage capacity of ceria solely due to its ability to easily form and heal oxygen vacancies or do alternative mechanisms also operate at the nanoscale? How prone are metal particles deposited on ceria to sintering or dispersion and how is this interplay controlled by the nanostructuring of the support? Under what conditions will the transfer of lattice oxygen atoms from ceria support to the metal particles deposited thereon become energetically favorable? How can the electron transfer across the metal-ceria interface be measured and its peculiarities rationalized? The discussed examples show that accounting for ceria nanostructuring in catalysts is essential for performing trustworthy computational modeling. Such realistic description is possible thanks to a variety of the recently developed dedicated models representative of ceria at the nanoscale.

Graphical Abstract


CeO2 DFT Nanomaterials Catalysis Reactivity Transition metal particles 



Density functional theory


Electronic metal-support interaction


Adsorption energy


Oxygen vacancy formation energy


Self assembly energy


Fourier-transform infrared spectroscopy


Generalized gradient approximation


Generalized gradient approximation including the Hubbard +U correction


Exchange–correlation functional by Heyd et al. [1, 2]


Interatomic potential




Local density approximation


Local density approximation including the +U correction


Low-energy electron diffraction




Metal-support interaction




Oxygen storage capacity


Oxygen vacancy


Exchange–correlation functional by Perdew and Wang [3]

PW91 + 4

Exchange–correlation functional by Perdew and Wang corrected with a Hubbard U value of 4 eV


Resonant photoemission spectroscopy


Single-atom catalyst


Strong metal-support interaction


Solid-oxide fuel cell


Synchrotron radiation photoemission spectroscopy


Scanning tunneling microscopy


Transmission electron microscopy


Temperature programmed desorption


Temperature programmed reduction


Ultrahigh vacuum


Water gas shift


X-Ray diffraction


X-Ray photoemission spectroscopy



During the modeling studies of ceria-based materials over the last decade the authors enjoyed very fruitful collaborations with many colleagues from various countries mentioned in the references of the joint publications. We are deeply indebted to each of them for the inspiration, creativity and invaluable contributions. This work was supported by the European Community (FP7-NMP.2012.1.1-1 project ChipCAT, Reference No. 310191), Spanish MINECO (grants CTQ2012-34969 and CTQ2015-64618-R co-funded by FEDER) and Generalitat de Catalunya (grants 2014SGR97 and XRQTC). The authors acknowledge support from the COST Action CM1104 “Reducible oxide chemistry, structure and functions”. Computer resources, technical expertise and assistance were partly provided by the Red Española de Supercomputación. A.B. acknowledges support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/Marie Curie Actions/Grant no. 626764 (Nano-DeSign).


  1. 1.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215. doi: 10.1063/1.1564060 CrossRefGoogle Scholar
  2. 2.
    Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906. doi: 10.1063/1.2204597
  3. 3.
    Wang Y, Perdew JP (1991) Spin scaling of the electron-gas correlation energy in the high-density limit. Phys Rev B 43:8911–8916. doi: 10.1103/PhysRevB.43.8911 CrossRefGoogle Scholar
  4. 4.
    Sun C, Li H, Chen L (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5:8475. doi: 10.1039/c2ee22310d CrossRefGoogle Scholar
  5. 5.
    Trovarelli A (1996) Catalytic properties of Ceria and CeO2 -containing materials. Catal Rev 38:439–520. doi: 10.1080/01614949608006464 CrossRefGoogle Scholar
  6. 6.
    Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials, 2nd edn. Imperial College Press, LondonCrossRefGoogle Scholar
  7. 7.
    Gandhi HS, Graham GW, McCabe RW (2003) Automotive exhaust catalysis. J Catal 216:433–442. doi: 10.1016/S0021-9517(02)00067-2 CrossRefGoogle Scholar
  8. 8.
    Kašpar J, Fornasiero P, Hickey N (2003) Automotive catalytic converters: current status and some perspectives. Catal Today 77:419–449. doi: 10.1016/S0920-5861(02)00384-X CrossRefGoogle Scholar
  9. 9.
    Pozdnyakova O, Teschner D, Wootsch A et al (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part II: oxidation states and surface species on Pd/CeO2 under reaction conditions, suggested reaction mechanism. J Catal 237:17–28. doi: 10.1016/j.jcat.2005.10.015 CrossRefGoogle Scholar
  10. 10.
    Pozdnyakova O, Teschner D, Wootsch A et al (2006) Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: oxidation state and surface species on Pt/CeO2 under reaction conditions. J Catal 237:1–16. doi: 10.1016/j.jcat.2005.10.014 CrossRefGoogle Scholar
  11. 11.
    Tabakova T, Avgouropoulos G, Papavasiliou J et al (2011) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Appl Catal B Environ 101:256–265. doi: 10.1016/j.apcatb.2010.10.016 CrossRefGoogle Scholar
  12. 12.
    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301:935–938. doi: 10.1126/science.1085721 CrossRefGoogle Scholar
  13. 13.
    Tabakova T, Manzoli M, Paneva D et al (2011) CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: part 2. Impact of the support composition on the performance in the water-gas shift reaction. Appl Catal B Environ 101:266–274. doi: 10.1016/j.apcatb.2010.11.021 CrossRefGoogle Scholar
  14. 14.
    Senanayake SD, Mudiyanselage K, Bruix A et al (2014) The unique properties of the oxide-metal interface: reaction of ethanol on an inverse model CeOx –Au(111) catalyst. J Phys Chem C 118:25057–25064. doi: 10.1021/jp507966v CrossRefGoogle Scholar
  15. 15.
    Bruix A, Lykhach Y, Matolínová I et al (2014) Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew Chem Int Ed Engl 53:10525–10530. doi: 10.1002/anie.201402342 CrossRefGoogle Scholar
  16. 16.
    Vilé G, Bridier B, Wichert J, Pérez-Ramírez J (2012) Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew Chem Int Ed Engl 51:8620–8623. doi: 10.1002/anie.201203675 CrossRefGoogle Scholar
  17. 17.
    Vilé G, Colussi S, Krumeich F et al (2014) Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew Chem Int Ed Engl 53:12069–12072. doi: 10.1002/anie.201406637 CrossRefGoogle Scholar
  18. 18.
    Carrettin S, Concepción P, Corma A et al (2004) Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew Chemie Int Ed 43:2592–2594. doi: 10.1002/anie.200353570 CrossRefGoogle Scholar
  19. 19.
    Guzman J, Carrettin S, Corma A (2005) Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J Am Chem Soc 127:3286–3287. doi: 10.1021/ja043752s CrossRefGoogle Scholar
  20. 20.
    Melchionna M, Fornasiero P (2014) The role of ceria-based nanostructured materials in energy applications. Mater Today 17:349–357. doi: 10.1016/j.mattod.2014.05.005 CrossRefGoogle Scholar
  21. 21.
    Mullins DR (2015) The surface chemistry of cerium oxide. Surf Sci Rep 70:42–85. doi: 10.1016/j.surfrep.2014.12.001 CrossRefGoogle Scholar
  22. 22.
    Freund H-J, Kuhlenbeck H, Libuda J et al (2001) Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top Catal 15:201–209. doi: 10.1023/A:1016686322301 CrossRefGoogle Scholar
  23. 23.
    Paier J, Penschke C, Sauer J (2013) Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 113:3949–3985. doi: 10.1021/cr3004949 CrossRefGoogle Scholar
  24. 24.
    Ganduglia-Pirovano MV (2015) The non-innocent role of cerium oxide in heterogeneous catalysis: a theoretical perspective. Catal Today 253:20–32. doi: 10.1016/j.cattod.2015.01.049 CrossRefGoogle Scholar
  25. 25.
    Bromley ST, de Moreira IPR, Neyman KM, Illas F (2009) Approaching nanoscale oxides: models and theoretical methods. Chem Soc Rev 38:2657–2670. doi: 10.1039/b806400h CrossRefGoogle Scholar
  26. 26.
    Kozlov SM, Neyman KM (2013) Catalysis from first principles: towards accounting for the effects of nanostructuring. Top Catal 56:867–873. doi: 10.1007/s11244-013-0050-1 CrossRefGoogle Scholar
  27. 27.
    Loschen C, Bromley ST, Neyman KM, Illas F (2007) Understanding ceria nanoparticles from first-principles calculations. J Phys Chem C 111:10142–10145. doi: 10.1021/jp072787m CrossRefGoogle Scholar
  28. 28.
    Loschen C, Migani A, Bromley ST et al (2008) Density functional studies of model cerium oxide nanoparticles. Phys Chem Chem Phys 10:5730–5738. doi: 10.1039/b805904g CrossRefGoogle Scholar
  29. 29.
    Vayssilov GN, Lykhach Y, Migani A et al (2011) Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 10:310–315. doi: 10.1038/nmat2976 CrossRefGoogle Scholar
  30. 30.
    Bruix A, Rodriguez JA, Ramírez PJ et al (2012) A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J Am Chem Soc 134:8968–8974. doi: 10.1021/ja302070k CrossRefGoogle Scholar
  31. 31.
    Lykhach Y, Kozlov SM, Skála T et al (2016) Counting electrons on supported nanoparticles. Nat Mater 15:284–288. doi: 10.1038/nmat4500 CrossRefGoogle Scholar
  32. 32.
    Fiala R, Figueroba A, Bruix A et al (2016) High efficiency of Pt2+–CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells. Appl Catal B Environ. doi: 10.1016/j.apcatb.2016.02.036 Google Scholar
  33. 33.
    Figueroba A, Kovács G, Bruix A, Neyman KM (2016) Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catal Sci Technol. doi: 10.1039/C6CY00294C Google Scholar
  34. 34.
    Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954. doi: 10.1103/PhysRevB.44.943 CrossRefGoogle Scholar
  35. 35.
    Dudarev SL, Botton GA, Savrasov SY et al (1998) Electron-energy-loss spectra and the structural stability of nickel oxide. Phys Rev B 57:1505–1509. doi: 10.1103/PhysRevB.57.1505 CrossRefGoogle Scholar
  36. 36.
    Fabris S, de Gironcoli S, Baroni S et al (2005) Taming multiple valency with density functionals: a case study of defective ceria. Phys Rev B 71:041102. doi: 10.1103/PhysRevB.71.041102 CrossRefGoogle Scholar
  37. 37.
    Loschen C, Carrasco J, Neyman K, Illas F (2007) First-principles LDA + U and GGA + U study of cerium oxides: dependence on the effective U parameter. Phys Rev B 75:035115. doi: 10.1103/PhysRevB.75.035115 CrossRefGoogle Scholar
  38. 38.
    Pacchioni G (2014) First principles calculations on oxide-based heterogeneous catalysts and photocatalysts: problems and advances. Catal Letters 145:80–94. doi: 10.1007/s10562-014-1386-2 CrossRefGoogle Scholar
  39. 39.
    Paier J (2016) Hybrid density functionals applied to complex solid catalysts: successes, limitations, and prospects. Catal Letters 146:861–885. doi: 10.1007/s10562-016-1735-4 CrossRefGoogle Scholar
  40. 40.
    Migani A, Vayssilov GN, Bromley ST et al (2010) Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chem Commun 46:5936–5938. doi: 10.1039/c0cc01091j CrossRefGoogle Scholar
  41. 41.
    Migani A, Vayssilov GN, Bromley ST et al (2010) Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J Mater Chem 20:10535–10546. doi: 10.1039/c0jm01908a CrossRefGoogle Scholar
  42. 42.
    Migani A, Neyman KM, Bromley ST (2012) Octahedrality versus tetrahedrality in stoichiometric ceria nanoparticles. Chem Commun 48:4199–4201. doi: 10.1039/c2cc18046d CrossRefGoogle Scholar
  43. 43.
    Wang ZL, Feng X (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107:13563–13566. doi: 10.1021/jp036815m CrossRefGoogle Scholar
  44. 44.
    Branda MM, Ferullo RM, Causà M, Illas F (2011) Relative stabilities of low index and stepped CeO2 surfaces from hybrid and GGA + U implementations of density functional theory. J Phys Chem C 3716–3721. doi: 10.1021/jp111427j
  45. 45.
    Migani A, Neyman KM, Illas F, Bromley ST (2009) Exploring Ce3+/Ce4+ cation ordering in reduced ceria nanoparticles using interionic-potential and density-functional calculations. J Chem Phys 131:064701. doi: 10.1063/1.3195063 CrossRefGoogle Scholar
  46. 46.
    Sk MA, Kozlov SM, Lim KH et al (2014) Oxygen vacancies in self-assemblies of ceria nanoparticles. J Mater Chem A 2:18329–18338. doi: 10.1039/C4TA02200A CrossRefGoogle Scholar
  47. 47.
    Viñes F, Illas F, Neyman KM (2007) On the mechanism of formation of metal nanowires by self-assembly. Angew Chem Int Ed Engl 46:7094–7097. doi: 10.1002/anie.200701613 CrossRefGoogle Scholar
  48. 48.
    Branda MM, Loschen C, Neyman KM, Illas F (2008) Atomic and electronic structure of cerium oxide stepped model surfaces. J Phys Chem C 112:17643–17651. doi: 10.1021/jp806066g CrossRefGoogle Scholar
  49. 49.
    Castellani NJ, Branda MM, Neyman KM, Illas F (2009) Density functional theory study of the adsorption of Au atom on cerium oxide: effect of low-coordinated surface sites. J Phys Chem C 113:4948–4954. doi: 10.1021/jp8094352 CrossRefGoogle Scholar
  50. 50.
    Fuente S, Branda MM, Illas F (2012) Role of step sites on water dissociation on stoichiometric ceria surfaces. Theor Chem Acc 131:1190. doi: 10.1007/s00214-012-1190-2 CrossRefGoogle Scholar
  51. 51.
    Nilius N, Kozlov SM, Jerratsch J-F et al (2012) Formation of one-dimensional electronic states along the step edges of CeO2(111). ACS Nano 6:1126–1133. doi: 10.1021/nn2036472 CrossRefGoogle Scholar
  52. 52.
    Shahed SMF, Sainoo Y, Komeda T (2011) Scanning tunneling microscope study of surface morphology variation of CeO2(111) with changing annealing condition. Jpn J Appl Phys 50:08LB05. doi: 10.1143/JJAP.50.08LB05
  53. 53.
    Tersoff J, Hamann DR (1985) Theory of the scanning tunneling microscope. Phys Rev B 31:805–813. doi: 10.1103/PhysRevB.31.805 CrossRefGoogle Scholar
  54. 54.
    Frenken JWM, Stoltze P (1999) Are vicinal metal surfaces stable? Phys Rev Lett 82:3500–3503. doi: 10.1103/PhysRevLett.82.3500 CrossRefGoogle Scholar
  55. 55.
    Kozlov SM, Viñes F, Nilius N et al (2012) Absolute surface step energies: accurate theoretical methods applied to ceria nanoislands. J Phys Chem Lett 3:1956–1961. doi: 10.1021/jz3006942 CrossRefGoogle Scholar
  56. 56.
    Xiao W, Guo Q, Wang EG (2003) Transformation of CeO2(111) to Ce2O3(0001) films. Chem Phys Lett 368:527–531. doi: 10.1016/S0009-2614(02)01889-4 CrossRefGoogle Scholar
  57. 57.
    Matolín V, Libra J, Matolínová I et al (2007) Growth of ultra-thin cerium oxide layers on Cu(111). Appl Surf Sci 254:153–155. doi: 10.1016/j.apsusc.2007.07.010 CrossRefGoogle Scholar
  58. 58.
    Flege JI, Kaemena B, Gevers S et al (2011) Silicate-free growth of high-quality ultrathin cerium oxide films on Si(111). Phys Rev B 84:235418. doi: 10.1103/PhysRevB.84.235418 CrossRefGoogle Scholar
  59. 59.
    Stetsovych V, Pagliuca F, Dvořák F et al (2013) Epitaxial Cubic Ce2O3 films via Ce–CeO2 interfacial reaction. J Phys Chem Lett 4:866–871. doi: 10.1021/jz400187j CrossRefGoogle Scholar
  60. 60.
    Luches P, Pagliuca F, Valeri S (2014) Structural and morphological modifications of thermally reduced cerium oxide ultrathin epitaxial films on Pt(111). Phys Chem Chem Phys 16:18848–18857. doi: 10.1039/c4cp02723j Google Scholar
  61. 61.
    Kozlov SM, Demiroglu I, Neyman KM, Bromley ST (2015) Reduced ceria nanofilms from structure prediction. Nanoscale 7:4361–4366. doi: 10.1039/c4nr07458k CrossRefGoogle Scholar
  62. 62.
    Sangthong W, Limtrakul J, Illas F, Bromley ST (2010) Persistence of magic cluster stability in ultra-thin semiconductor nanorods. Nanoscale 2:72–77. doi: 10.1039/b9nr00282k CrossRefGoogle Scholar
  63. 63.
    Ganduglia-Pirovano MV, Da Silva JLF, Sauer J (2009) Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys Rev Lett 102:026101. doi: 10.1103/PhysRevLett.102.026101 CrossRefGoogle Scholar
  64. 64.
    Nolan M (2010) Hybrid density functional theory description of oxygen vacancies in the CeO2 (110) and (100) surfaces. Chem Phys Lett 499:126–130. doi: 10.1016/j.cplett.2010.09.016 CrossRefGoogle Scholar
  65. 65.
    Nolan M, Fearon J, Watson G (2006) Oxygen vacancy formation and migration in ceria. Solid State Ionics 177:3069–3074. doi: 10.1016/j.ssi.2006.07.045 CrossRefGoogle Scholar
  66. 66.
    Kozlov SM, Neyman KM (2014) O vacancies on steps on the CeO2(111) surface. Phys Chem Chem Phys 16:7823–7829. doi: 10.1039/c4cp00136b CrossRefGoogle Scholar
  67. 67.
    Xu Z, Buehler MJ (2010) Interface structure and mechanics between graphene and metal substrates: a first-principles study. J Phys: Condens Matter 22:485301. doi: 10.1088/0953-8984/22/48/485301 Google Scholar
  68. 68.
    Preda G, Migani A, Neyman KM et al (2011) Formation of superoxide anions on ceria nanoparticles by interaction of molecular oxygen with Ce3+ sites. J Phys Chem C 115:5817–5822. doi: 10.1021/jp111147y CrossRefGoogle Scholar
  69. 69.
    Kullgren J, Hermansson K, Broqvist P (2013) Supercharged low-temperature oxygen storage capacity of ceria at the nanoscale. J Phys Chem Lett 4:604–608. doi: 10.1021/jz3020524 CrossRefGoogle Scholar
  70. 70.
    Huang M, Fabris S (2007) Role of surface peroxo and superoxo species in the low-temperature oxygen buffering of ceria: density functional theory calculations. Phys Rev B 75:081404. doi: 10.1103/PhysRevB.75.081404 CrossRefGoogle Scholar
  71. 71.
    Huang X, Wang B, Grulke EA, Beck MJ (2014) Toward tuning the surface functionalization of small ceria nanoparticles. J Chem Phys 140:074703. doi: 10.1063/1.4864378 CrossRefGoogle Scholar
  72. 72.
    Tschöpe A, Schaadt D, Birringer R, Ying JY (1997) Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation. Nanostructured Mater 9:423–432. doi: 10.1016/S0965-9773(97)00095-0 CrossRefGoogle Scholar
  73. 73.
    Xu J, Harmer J, Li G et al (2010) Size dependent oxygen buffering capacity of ceria nanocrystals. Chem Commun (Camb) 46:1887–1889. doi: 10.1039/b923780a CrossRefGoogle Scholar
  74. 74.
    Wu Z, Li M, Howe J et al (2010) Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 26:16595–16606. doi: 10.1021/la101723w CrossRefGoogle Scholar
  75. 75.
    Cafun J-D, Kvashnina KO, Casals E et al (2013) Absence of Ce3+ sites in chemically active colloidal ceria nanoparticles. ACS Nano 7:10726–10732. doi: 10.1021/nn403542p CrossRefGoogle Scholar
  76. 76.
    Renuka NK, Harsha N, Divya T (2015) Supercharged ceria quantum dots with exceptionally high oxygen buffer action. RSC Adv 5:38837–38841. doi: 10.1039/C5RA01161B CrossRefGoogle Scholar
  77. 77.
    Huang X, Beck MJ (2014) Surface structure of catalytically-active ceria nanoparticles. Comput Mater Sci 91:122–133. doi: 10.1016/j.commatsci.2014.04.037 CrossRefGoogle Scholar
  78. 78.
    Huang X, Beck MJ (2015) Determining the oxidation state of small, hydroxylated metal-oxide nanoparticles with infrared absorption spectroscopy. Chem Mater 27:2965–2972. doi: 10.1021/acs.chemmater.5b00259 CrossRefGoogle Scholar
  79. 79.
    Migani A, Loschen C, Illas F, Neyman KM (2008) Towards size-converged properties of model ceria nanoparticles: monitoring by adsorbed CO using DFT + U approach. Chem Phys Lett 465:106–109. doi: 10.1016/j.cplett.2008.09.060 CrossRefGoogle Scholar
  80. 80.
    Vayssilov GN, Mihaylov M, St Petkov P et al (2011) Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J Phys Chem C 115:23435–23454. doi: 10.1021/jp208050a CrossRefGoogle Scholar
  81. 81.
    Boronat M, López-Ausens T, Corma A (2016) The acid-base and redox reactivity of CeO2 nanoparticles. Influence of the Hubbard U term in DFT + U studies. Surf Sci 648:212–219. doi: 10.1016/j.susc.2015.10.047 CrossRefGoogle Scholar
  82. 82.
    Huang X, Beck MJ (2015) Metal-free low-temperature water–gas shift catalysis over small, hydroxylated ceria nanoparticles. ACS Catal 6362–6369. doi: 10.1021/acscatal.5b01227
  83. 83.
    Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50:353–367. doi: 10.1016/S0920-5861(98)00515-X CrossRefGoogle Scholar
  84. 84.
    Crucq A, Diwell AF, Rajaram RR et al (1991) The role of ceria in three-way catalysts. Stud Surf Sci Catal 71:139–152. doi: 10.1016/S0167-2991(08)62975-4 CrossRefGoogle Scholar
  85. 85.
    Fornasiero P, Graziani M, Kas J (1999) Use of CeO2-based oxides in the three-way catalysis. Catal T 50:285–298. doi: 10.1016/S0920-5861(98)00510-0 CrossRefGoogle Scholar
  86. 86.
    Bernal S, Calvino J, Cauqui M et al (1999) Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal Today 50:175–206. doi: 10.1016/S0920-5861(98)00503-3 CrossRefGoogle Scholar
  87. 87.
    Kim G (1982) Ceria-promoted three-way catalysts for auto exhaust emission control. Ind Eng Chem Prod Res Dev 21:267–274. doi: 10.1021/i300006a014 CrossRefGoogle Scholar
  88. 88.
    Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440. doi: 10.1080/01614940903048661 CrossRefGoogle Scholar
  89. 89.
    Bunluesin T, Gorte RJ, Graham GW et al (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B Environ 15:107–114. doi: 10.1016/S0926-3373(97)00040-4 CrossRefGoogle Scholar
  90. 90.
    Hatanaka M, Takahashi N, Tanabe T et al (2010) Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt–O–Ce bond. Appl Catal B Environ 99:336–342. doi: 10.1016/j.apcatb.2010.07.003 CrossRefGoogle Scholar
  91. 91.
    Liu X, Ruettinger W, Xu X, Farrauto R (2005) Deactivation of Pt/CeO2 water-gas shift catalysts due to shutdown/startup modes for fuel cell applications. Appl Catal B Environ 56:69–75. doi: 10.1016/j.apcatb.2004.04.026 CrossRefGoogle Scholar
  92. 92.
    Corma A, Alemany LJ, González ID et al (2010) A comparative study of the water gas shift reaction over platinum catalysts supported on CeO2, TiO2 and Ce-modified TiO2. Catal Today 149:372–379. doi: 10.1016/j.cattod.2009.07.100 CrossRefGoogle Scholar
  93. 93.
    Deng W, Flytzani-Stephanopoulos M (2006) On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. Angew Chem Int Ed Engl 45:2285–2289. doi: 10.1002/anie.200503220 CrossRefGoogle Scholar
  94. 94.
    Vecchietti J, Bonivardi A, Xu W et al (2014) Understanding the role of oxygen vacancies in the water gas shift reaction on ceria-supported platinum catalysts. ACS Catal 2088–2096. doi: 10.1021/cs500323u
  95. 95.
    Lim D-H, Lee W-D, Choi D-H, Lee H-I (2010) Effect of ceria nanoparticles into the Pt/C catalyst as cathode material on the electrocatalytic activity and durability for low-temperature fuel cell. Appl Catal B Environ 94:85–96. doi: 10.1016/j.apcatb.2009.10.024 CrossRefGoogle Scholar
  96. 96.
    Matolín V, Khalakhan I, Matolínová I et al (2010) Pt2+, 4+ ions in CeO2 rf-sputtered thin films. Surf Interface Anal 42:882–885. doi: 10.1002/sia.3327 CrossRefGoogle Scholar
  97. 97.
    Matolín V, Cabala M, Matolínová I et al (2010) Pt and Sn doped sputtered CeO2 electrodes for fuel cell applications. Fuel Cells 10:139–144. doi: 10.1002/fuce.200900036 Google Scholar
  98. 98.
    Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  99. 99.
    Yamamoto K, Imaoka T, Chun W-J et al (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1:397–402. doi: 10.1038/nchem.288 CrossRefGoogle Scholar
  100. 100.
    Somorjai GA, Blakely DW (1975) Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 258:580–583. doi: 10.1038/258580a0 CrossRefGoogle Scholar
  101. 101.
    Gillard RD (1968) Platinum and catalysts. Nature 218:502–503. doi: 10.1038/218502b0 Google Scholar
  102. 102.
    Yam VWW (2010) Behind platinum’s sparkle. Nat Chem 2:790. doi: 10.1038/nchem.818 CrossRefGoogle Scholar
  103. 103.
    Tollefson J (2007) Worth its weight in platinum. Nature 450:334–335. doi: 10.1038/450334a CrossRefGoogle Scholar
  104. 104.
    Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat Commun 4:1922. doi: 10.1038/ncomms2944 CrossRefGoogle Scholar
  105. 105.
    Yang W, Fellinger T-P, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. doi: 10.1021/ja108039j CrossRefGoogle Scholar
  106. 106.
    Le Goff A, Artero V, Jousselme B et al (2009) From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326:1384–1387. doi: 10.1126/science.1179773 CrossRefGoogle Scholar
  107. 107.
    Farmer JA, Campbell CT (2010) Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329:933–936. doi: 10.1126/science.1191778 CrossRefGoogle Scholar
  108. 108.
    Zhou Y, Perket JM, Zhou J (2010) Growth of Pt nanoparticles on reducible CeO2(111) thin films: effect of nanostructures and redox properties of ceria. J Phys Chem C 2:11853–11860. doi: 10.1021/jp1007279 CrossRefGoogle Scholar
  109. 109.
    Campbell CT (2013) The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc Chem Res 46:1712–1719. doi: 10.1021/ar3003514 CrossRefGoogle Scholar
  110. 110.
    Yang X-F, Wang A, Qiao B et al (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748. doi: 10.1021/ar300361m CrossRefGoogle Scholar
  111. 111.
    Flytzani-Stephanopoulos M (2014) Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Acc Chem Res 47:783–792. doi: 10.1021/ar4001845 CrossRefGoogle Scholar
  112. 112.
    Vilé G, Albani D, Nachtegaal M et al (2015) A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed Engl 54:11265–11269. doi: 10.1002/anie.201505073 CrossRefGoogle Scholar
  113. 113.
    Campbell CT, Sellers JRV (2013) Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss 162:9–30. doi: 10.1039/c3fd00094j CrossRefGoogle Scholar
  114. 114.
    James TE, Hemmingson SL, Campbell CT (2015) Energy of supported metal catalysts: from single atoms to large metal nanoparticles. ACS Catal 5673–5678. doi: 10.1021/acscatal.5b01372
  115. 115.
    Aleksandrov HA, Neyman KM, Vayssilov GN (2015) Structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Phys Chem Chem Phys 17:14551–14560. doi: 10.1039/C5CP01685A CrossRefGoogle Scholar
  116. 116.
    Lykhach Y, Figueroba A, Camellone MF et al (2016) Reactivity of atomically dispersed Pt2+ species towards H2: model Pt-CeO2 fuel cell catalyst. Phys Chem Chem Phys 18:7672–7679. doi: 10.1039/c6cp00627b CrossRefGoogle Scholar
  117. 117.
    Hu A, Neyman KM, Staufer M et al (1999) A surface site as polydentate ligand of a metal complex: density functional studies of rhenium subcarbonyls supported on magnesium oxide. J Am Chem Soc 3:4522–4523. doi: 10.1021/ja990083n CrossRefGoogle Scholar
  118. 118.
    Bruix A, Neyman KM, Illas F (2010) Adsorption, oxidation state, and diffusion of Pt atoms on the CeO2(111) surface. J Phys Chem C 114:14202–14207. doi: 10.1021/jp104490k CrossRefGoogle Scholar
  119. 119.
    Pilger F, Testino A, Carino A et al (2016) Size control of Pt clusters on CeO2 nanoparticles via an incorporation-segregation mechanism and study of segregation kinetics. ACS Catal 6:3688–3699. doi: 10.1021/acscatal.6b00934 CrossRefGoogle Scholar
  120. 120.
    Bera P, Priolkar KR, Gayen A et al (2003) Ionic dispersion of Pt over CeO2 by the combustion method: structural investigation by XRD, TEM, XPS, and EXAFS. Chem Mater 15:2049–2060. doi: 10.1021/cm0204775 CrossRefGoogle Scholar
  121. 121.
    Guo H, Gao H, Hofer W et al (2012) Synchrotron radiation photoelectron spectroscopy study of metal-oxide thin film catalysts: Pt–CeO2 coated CNTs. Appl Surf Sci 258:2161–2164. doi: 10.1016/j.apsusc.2011.02.119 CrossRefGoogle Scholar
  122. 122.
    Matolín V, Matolínová I, Václavů M et al (2010) Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir 26:12824–12831. doi: 10.1021/la100399t CrossRefGoogle Scholar
  123. 123.
    Hatanaka M, Takahashi N, Takahashi N et al (2009) Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J Catal 266:182–190. doi: 10.1016/j.jcat.2009.06.005 CrossRefGoogle Scholar
  124. 124.
    Nagai Y, Hirabayashi T, Dohmae K et al (2006) Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J Catal 242:103–109. doi: 10.1016/j.jcat.2006.06.002 CrossRefGoogle Scholar
  125. 125.
    Scanlon DO, Morgan BJ, Watson GW (2011) The origin of the enhanced oxygen storage capacity of Ce(1-x)(Pd/Pt)xO2. Phys Chem Chem Phys 13:4279–4284. doi: 10.1039/c0cp01635g CrossRefGoogle Scholar
  126. 126.
    Hegde MS, Madras G, Patil KC (2009) Noble metal ionic catalysts. Acc Chem Res 42:704–712. doi: 10.1021/ar800209s CrossRefGoogle Scholar
  127. 127.
    Colussi S, Gayen A, Farnesi Camellone M et al (2009) Nanofaceted Pd–O sites in Pd–Ce surface superstructures: enhanced activity in catalytic combustion of methane. Angew Chem Int Ed Engl 48:8481–8484. doi: 10.1002/anie.200903581 CrossRefGoogle Scholar
  128. 128.
    Barrio L, Kubacka A, Zhou G et al (2010) Unusual physical and chemical properties of Ni in Ce1–xNixO2-y oxides: structural characterization and catalytic activity for the water gas shift reaction. J Phys Chem C 114:12689–12697. doi: 10.1021/jp103958u CrossRefGoogle Scholar
  129. 129.
    Neitzel A, Figueroba A, Lykhach Y et al (2016) Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J Phys Chem C 120:9852–9862. doi: 10.1021/acs.jpcc.6b02264 CrossRefGoogle Scholar
  130. 130.
    Belton DN, Sun YM, White JM (1984) Metal-support interactions on rhodium and platinum/titanium dioxide model catalysts. J Phys Chem 88:5172–5176. doi: 10.1021/j150666a011 CrossRefGoogle Scholar
  131. 131.
    Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20:389–394. doi: 10.1021/ar00143a001 CrossRefGoogle Scholar
  132. 132.
    Eley DD, Pines H, Weisz PB et al (1989) Metal-support interaction: group VIII metals and reducible oxides. Adv Catal 36:173–235. doi: 10.1016/S0360-0564(08)60018-8 Google Scholar
  133. 133.
    Stakheev AY, Kustov L (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A Gen 188:3–35. doi: 10.1016/S0926-860X(99)00232-X CrossRefGoogle Scholar
  134. 134.
    Zhou Y, Perket JM, Crooks AB, Zhou J (2010) Effect of ceria support on the structure of Ni nanoparticles. J Phys Chem Lett 1:1447–1453. doi: 10.1021/jz1003044 CrossRefGoogle Scholar
  135. 135.
    Li L, Wang L-L, Johnson DD et al (2013) Noncrystalline-to-crystalline transformations in Pt nanoparticles. J Am Chem Soc 135:13062–13072. doi: 10.1021/ja405497p CrossRefGoogle Scholar
  136. 136.
    Senanayake SD, Rodriguez JA, Stacchiola D (2013) Electronic metal-support interactions and the production of hydrogen through the water-gas shift reaction and ethanol steam reforming: fundamental studies with well-defined model catalysts. Top Catal 56:1488–1498. doi: 10.1007/s11244-013-0148-5 CrossRefGoogle Scholar
  137. 137.
    Blasco T, Nieto JML (1997) Oxidative dyhydrogenation of short chain alkanes on supported vanadium oxide catalysts. Appl Catal A Gen 157:117–142. doi: 10.1016/S0926-860X(97)00029-X CrossRefGoogle Scholar
  138. 138.
    Park JB, Graciani J, Evans J et al (2010) Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: high water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J Am Chem Soc 132:356–363. doi: 10.1021/ja9087677 CrossRefGoogle Scholar
  139. 139.
    Boronat M, Concepción P, Corma A et al (2007) A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: a cooperative effect between gold and the support. J Am Chem Soc 129:16230–16237. doi: 10.1021/ja076721g CrossRefGoogle Scholar
  140. 140.
    Cargnello M, Doan-Nguyen VVT, Gordon TR et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773. doi: 10.1126/science.1240148 CrossRefGoogle Scholar
  141. 141.
    Komaya T, Bell AT, Wengsieh Z et al (1994) Effects of dispersion and metal-metal oxide interactions on Fischer–Tropsch synthesis over Ru/TiO2 and TiO2-promoted Ru/SiO2. J Catal 150:400–406. doi: 10.1006/jcat.1994.1358 CrossRefGoogle Scholar
  142. 142.
    Bruix A, Migani A, Vayssilov GN et al (2011) Effects of deposited Pt particles on the reducibility of CeO2(111). Phys Chem Chem Phys 13:11384–11392. doi: 10.1039/c1cp20950g CrossRefGoogle Scholar
  143. 143.
    Vayssilov GN, Migani A, Neyman K (2011) Density functional modeling of the interactions of platinum clusters with CeO2 nanoparticles of different size. J Phys Chem C 115:16081–16086. doi: 10.1021/jp204222k CrossRefGoogle Scholar
  144. 144.
    Bruix A, Nazari F, Neyman KM, Illas F (2011) On the adsorption and formation of Pt dimers on the CeO2(111) surface. J Chem Phys 135:244708. doi: 10.1063/1.3672102 CrossRefGoogle Scholar
  145. 145.
    Matsumoto M, Soda K, Ichikawa K et al (1994) Resonant photoemission study of CeO2. Phys Rev B 50:11340–11346. doi: 10.1103/PhysRevB.50.11340 CrossRefGoogle Scholar
  146. 146.
    Matolín V, Cabala M, Cháb V et al (2008) A resonant photoelectron spectroscopy study of SnOx doped CeO2 catalysts. Surf Interface Anal 40:225–230. doi: 10.1002/sia.2625 CrossRefGoogle Scholar
  147. 147.
    Aranifard S, Ammal SC, Heyden A (2012) Nature of Ptn/CeO2(111) surface under water-gas shift reaction conditions: a constrained ab initio thermodynamics study. J Phys Chem C 116:9029–9042. doi: 10.1021/jp300515b CrossRefGoogle Scholar
  148. 148.
    Negreiros FR, Fabris S (2014) Role of cluster morphology in the dynamics and reactivity of subnanometer Pt clusters supported on ceria surfaces. J Phys Chem C 118:21014–21020. doi: 10.1021/jp506404z CrossRefGoogle Scholar
  149. 149.
    Campbell CT (2012) Catalyst-support interactions: electronic perturbations. Nat Chem 4:597–598. doi: 10.1038/nchem.1412 CrossRefGoogle Scholar
  150. 150.
    Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J Am Chem Soc 100:170–175. doi: 10.1021/ja00469a029 CrossRefGoogle Scholar
  151. 151.
    Murgida GE, Ganduglia-Pirovano MV (2013) Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations. Phys Rev Lett 110:246101. doi: 10.1103/PhysRevLett.110.246101 CrossRefGoogle Scholar
  152. 152.
    Kullgren J, Wolf MJ, Castleton CWM et al (2014) Oxygen vacancies versus fluorine at CeO2(111): a case. Phys Rev Lett 112:156102. doi: 10.1103/PhysRevLett.112.156102 CrossRefGoogle Scholar
  153. 153.
    Wu X-P, Gong X-Q (2016) Clustering of oxygen vacancies at CeO2(111): critical role of hydroxyls. Phys Rev Lett 116:086102. doi: 10.1103/PhysRevLett.116.086102 CrossRefGoogle Scholar
  154. 154.
    Carrasco J, Vilé G, Fernández-Torre D et al (2014) Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J Phys Chem C 118:5352–5360. doi: 10.1021/jp410478c CrossRefGoogle Scholar
  155. 155.
    Jalowiecki-Duhamel L, Debeusscher S, Zarrou H et al (2008) Hydrogen storage in CeNiXOY and CeM0.5NiXOY (M = Zr or Al) mixed oxides. Catal Today 138:266–271. doi: 10.1016/j.cattod.2008.06.031 CrossRefGoogle Scholar
  156. 156.
    Jalowieckiduhamel L, Carpentier J, Ponchel A (2007) Catalytic hydrogen storage in cerium nickel and zirconium (or aluminium) mixed oxides. Int J Hydrogen Energy 32:2439–2444. doi: 10.1016/j.ijhydene.2006.10.056 CrossRefGoogle Scholar
  157. 157.
    Aleksandrov HA, Kozlov SM, Schauermann S et al (2014) How absorbed hydrogen affects the catalytic activity of transition metals. Angew Chem Int Ed Engl 53:13371–13375. doi: 10.1002/anie.201405738 CrossRefGoogle Scholar
  158. 158.
    Rodriguez JA, Graciani J, Evans J et al (2009) Water-gas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew Chem Int Ed Engl 48:8047–8050. doi: 10.1002/anie.200903918 CrossRefGoogle Scholar
  159. 159.
    Senanayake SD, Stacchiola D, Rodriguez JA (2013) Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Acc Chem Res 46:1702–1711. doi: 10.1021/ar300231p CrossRefGoogle Scholar
  160. 160.
    Graciani J, Mudiyanselage K, Xu F et al (2014) Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 345:546–550. doi: 10.1126/science.1253057 CrossRefGoogle Scholar
  161. 161.
    Capdevila-Cortada M, López N (2015) Descriptor analysis in methanol conversion on doped CeO2(111): guidelines for selectivity tuning. ACS Catal 5:6473–6480. doi: 10.1021/acscatal.5b01427 CrossRefGoogle Scholar
  162. 162.
    Capdevila-Cortada M, Vilé G, Teschner D et al (2016) Reactivity descriptors for ceria in catalysis. Appl Catal B Environ. doi: 10.1016/j.apcatb.2016.02.035 Google Scholar
  163. 163.
    Farra R, García-Melchor M, Eichelbaum M et al (2013) Promoted ceria: a structural, catalytic, and computational study. ACS Catal 3:2256–2268. doi: 10.1021/cs4005002 CrossRefGoogle Scholar
  164. 164.
    Reuter K (2016) Ab initio thermodynamics and first-principles microkinetics for surface catalysis. Catal Lett 146:541–563. doi: 10.1007/s10562-015-1684-3 CrossRefGoogle Scholar
  165. 165.
    Sakthivel TS, Reid DL, Bhatta UM et al (2015) Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing. Nanoscale 7:5169–5177. doi: 10.1039/c4nr07308h CrossRefGoogle Scholar
  166. 166.
    Sayle TXT, Molinari M, Das S et al (2013) Environment-mediated structure, surface redox activity and reactivity of ceria nanoparticles. Nanoscale 5:6063–6073. doi: 10.1039/c3nr00917c CrossRefGoogle Scholar
  167. 167.
    Möbus G, Saghi Z, Sayle DC et al (2011) Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv Funct Mater 21:1971–1976. doi: 10.1002/adfm.201002135 CrossRefGoogle Scholar
  168. 168.
    Feng X, Sayle DC, Wang ZL et al (2006) Converting ceria polyhedral nanoparticles into single-crystal nanospheres. Science 312:1504–1508. doi: 10.1126/science.1125767 CrossRefGoogle Scholar
  169. 169.
    Pieper HH, Barth C, Reichling M (2012) Characterization of atomic step structures on CaF2(111) by their electric potential. Appl Phys Lett 101:051601. doi: 10.1063/1.4739944 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics and Astronomy, Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityAarhus CDenmark
  2. 2.Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i ComputacionalUniversitat de BarcelonaBarcelonaSpain
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain

Personalised recommendations