Catalysis Letters

, Volume 146, Issue 9, pp 1712–1717 | Cite as

Highly Ordered Hierarchical Macroporous-Mesoporous Alumina with Crystalline Walls

  • Zhen-Xing Li
  • Ming-Ming Li


Highly ordered hierarchical macroporous-mesoporous alumina with crystalline walls are synthesized by facial route. The general synthesis strategy is based on a sol–gel process associated with block copolymers as soft templates and polystyrene colloidal crystals as hard template to produce macropore and mesopore structures, respectively. Small-angle XRD, TEM and Nitrogen adsorption and desorption results show that hierarchical macroporous-mesoporous alumina possess highly ordered two-dimensional hexagonal mesostructured and highly ordered face centered cubic macropore arrays structure. The present work reveals that the hierarchical macroporous-mesoporous structure can endure high temperature up to 900 °C. FTIR pyridine adsorption measurements show that the amount of Lewis acid sites provided by hierarchical macroporous-mesoporous alumina is nearly two times more than that for mesoporous alumina, indicating that the open macroporous structure may be in favor of the reactant transfer, and the consequently superior activity. Large surface areas, high thermal stability, uniform pore structures and large amounts of surface Lewis acid sites illustrate that these materials are expected to find wide applications in catalysis realm.

Graphical Abstract

The highly ordered hierarchical macroporous-mesoporous alumina with crystalline walls are synthesized by a sol–gel process associated with block copolymers as soft templates and polystyrene colloidal crystals as hard template to produce macropore and mesopore structures, respectively.


Macroporous-mesoporous alumina Crystalline walls Synthesis Catalysis 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grant Nos. 21501197) and Science Foundation of China University of Petroleum, Beijing (Grant No. 2462015YJRC004).

Supplementary material

10562_2016_1795_MOESM1_ESM.doc (640 kb)
Supplementary material 1 (DOC 640 kb)


  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenkert JL (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  3. 3.
    Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Nat Mater 3:394–397CrossRefGoogle Scholar
  4. 4.
    Gao NN, Xie SJ, Liu SL, An J, Zhu XX, Hu LY, Wei HJ, Li XJ, Xu LY (2014) Catal Lett 144:1296–1304CrossRefGoogle Scholar
  5. 5.
    Ho CM, Yu JC, Kwong T, Mak AC, Lai S (2005) Chem Mater 17:4514–4522CrossRefGoogle Scholar
  6. 6.
    Li ZX, Li LL, Yuan Q, Feng W, Xu J, Sun LD, Song WG, Yan CH (2008) J Phys Chem C 112:18405–18411CrossRefGoogle Scholar
  7. 7.
    An K, Somorjai GA (2015) Catal Lett 145:233–248CrossRefGoogle Scholar
  8. 8.
    Morris CA, Anderson ML, Stroud RM, Merzbacher CI, Rolison DR (1999) Science 284:622–624CrossRefGoogle Scholar
  9. 9.
    Krawiec P, Kockrick E, Simon P, Auffermann G, Kaskel S (2006) Chem Mater 18:2663–2669CrossRefGoogle Scholar
  10. 10.
    Carreon MA, Guliants VV (2005) Eur J Inorg Chem 1:27–43CrossRefGoogle Scholar
  11. 11.
    Blasco T, Corma A, Navarro MT, Pariente JP (1995) J Catal 156:65–74CrossRefGoogle Scholar
  12. 12.
    Corma A, Corell C, Perez-Pariente J, Guil JM, Guil-Lopez R, Ncolopoulos S, Calbet JG, Vallet-Regi M (1996) Zeolites 16:7–14CrossRefGoogle Scholar
  13. 13.
    Li ZX, Shi FB, Yan CH (2015) Langmuir 31:8672–8679CrossRefGoogle Scholar
  14. 14.
    Misra C (1986) Industrial alumina chemicals ACS monograph 184, WashingtonGoogle Scholar
  15. 15.
    Zhang XJ, Zhang PP, Yu HB, Ma Z, Zhou SH (2015) Catal Lett 145:784–793CrossRefGoogle Scholar
  16. 16.
    Zhu HR, Xu Y, Han Y, Chen SW, Zhou T, Willander M, Cao X, Wang ZL (2015) Nano Res 8:3604–3611CrossRefGoogle Scholar
  17. 17.
    Zhang L, Papaefthymiou GC, Ying JY (2001) J Phys Chem B 105:7414–7423CrossRefGoogle Scholar
  18. 18.
    Dacquin JP, Dhainaut J, Duprez D, Royer S, Lee AF, Wilson K (2009) J Am Chem Soc 131:12896–12897CrossRefGoogle Scholar
  19. 19.
    Corma A (1995) Chem Rev 95:559–614CrossRefGoogle Scholar
  20. 20.
    Taguchi A, Schüth F (2005) Microporous Mesoporous Mater 77:1–45CrossRefGoogle Scholar
  21. 21.
    Kašpar J, Fornasiero P, Hickey N (2003) Catal Today 77:419–449CrossRefGoogle Scholar
  22. 22.
    Narula CK, Allison JE, Bauer DB, Gandhi HS (1996) Chem Mater 8:984–1003CrossRefGoogle Scholar
  23. 23.
    Chane-Ching J, Cobo F, Aubert D, Harvey HG, Airiau M, Corma A (2005) Chem Eur J 11:979–987CrossRefGoogle Scholar
  24. 24.
    Kuemmel M, Grosso D, Boissière C, Smarsly B, Brezesinski T, Albouy PA, Amenitsch H, Sanchez C (2005) Angew Chem Int Ed 44:4589–4592CrossRefGoogle Scholar
  25. 25.
    Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH (2008) J Am Chem Soc 130:3465–3472CrossRefGoogle Scholar
  26. 26.
    Sokolov S, Bell D, Stein A (2003) J Am Ceram Soc 86:1481–1486CrossRefGoogle Scholar
  27. 27.
    Weidmann C, Brezesinski K, Suchomski C, Tropp K, Grosser N, Haetge J, Smarsly BM, Brezesinski T (2012) Chem Mater 24:486–494CrossRefGoogle Scholar
  28. 28.
    Kuang D, Brezesinski T, Smarsly B (2004) J Am Chem Soc 126:10534–10535CrossRefGoogle Scholar
  29. 29.
    Wang Z, Li F, Ergang NS, Stein A (2006) Chem Mater 18:5543–5553CrossRefGoogle Scholar
  30. 30.
    Deng YH, Liu C, Yu T, Liu F, Zhang FQ, Wan Y, Zhang LJ, Wang CC, Tu B, Webley PA, Wang HT, Zhao DY (2007) Chem Mater 19:3271–3277CrossRefGoogle Scholar
  31. 31.
    Chai GS, Shin IS, Yu JS (2004) Adv Mater 16:2057–2061CrossRefGoogle Scholar
  32. 32.
    Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, LondonGoogle Scholar
  33. 33.
    Davis M, Ramirez DA, Hope-Weeks LJ (2013) ACS Appl Mater Interfaces 5:7786–7792CrossRefGoogle Scholar
  34. 34.
    Sadakane M, Horiuchi T, Kato N, Takahashi C, Ueda W (2007) Chem Mater 19:5779–5785CrossRefGoogle Scholar
  35. 35.
    Stebbins JF (1995) Handbook of physical constants. American Geophysical Union, WashingtonGoogle Scholar
  36. 36.
    Akitt JW (1989) Prog Nucl Magn Reson Spectrosc 21:1–149CrossRefGoogle Scholar
  37. 37.
    McManus J, Ashbrook SE, MacKenzie KJ, Wimperis D (2001) J Noncryst Solids 282:278–290CrossRefGoogle Scholar
  38. 38.
    Chupas PJ, Grey CP (1996) J Catal 159:69–79CrossRefGoogle Scholar
  39. 39.
    Jia WZ, Wu Q, Lang XW, Hu C, Zhao GQ, Li JH, Zhu ZR (2015) Catal Lett 145:654–661CrossRefGoogle Scholar
  40. 40.
    Valente JS, López-Salinas E, Bokhimi X, Flores J, Maubert AM, Lima E (2009) J Phys Chem C 113:16476–16484CrossRefGoogle Scholar
  41. 41.
    Abbattista F, Delmastro S, Gozzelino G, Mazza D, Vallino M, Busca G, Lorenzelli V, Ramis G (1989) J Catal 117:42–51CrossRefGoogle Scholar
  42. 42.
    Kawai T, Jiang KM, Ishikawa T (1996) J Catal 159:288–295CrossRefGoogle Scholar
  43. 43.
    Layman KA, Ivey MM, Hemminger JC (2003) J Phys Chem B 107:8538–8546CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Heavy Oil Processing, Institute of New EnergyChina University of Petroleum (Beijing)BeijingChina

Personalised recommendations