Catalysis Letters

, Volume 146, Issue 8, pp 1415–1422 | Cite as

Dehydrogenation of i-butane over Tunable Mesoporous Alumina Supported Pt–Sn Catalyst

  • Bin Gu
  • Songbo He
  • Xin Rong
  • Yu Shi
  • Chenglin Sun


Mesoporous aluminas (MAs) were synthesized in a CTAB–P123 dual-template system and used to prepare Pt–Sn/MAs catalysts by vacuum impregnation method for i-butane dehydrogenation. Characterization results showed that the dose of P123 and CTAB for synthesis of MAs can tune Brunauer–Emmett–Teller surface area, pore size and total acidity. i-Butane conversion has linear relationship with the total acidity of MAs, which also affects the product selectivities. Meanwhile, pore size of MAs cooperatively affects the product distribution via diffusion control. The deactivation of the catalysts is proportional to the coke formation, which improves the dehydrogenation product selectivities during time on stream.

Graphical Abstract


Mesoporous alumina Pore size Pt–Sn catalysts Dehydrogenation Butane 



This research was supported by Liaoning Provincial Natural Science Foundation of China (Grant No. 2013020111).


  1. 1.
    Nagaraja BM, Shin C-H, Jung K-D (2013) Selective and stable bimetallic PtSn/theta-Al2O3 catalyst for dehydrogenation of n-butane to n-butenes. Appl Catal A 467:211–223CrossRefGoogle Scholar
  2. 2.
    Seo H, Lee JK, Hong UG, Park G, Yoo Y, Lee J, Chang H, Song IK (2014) Direct dehydrogenation of n-butane over Pt/Sn/M/gamma-Al2O3 catalysts: effect of third metal (M) addition. Catal Commun 47:22–27CrossRefGoogle Scholar
  3. 3.
    Kumar MS, Chen D, Walmsley JC, Holmen A (2008) Dehydrogenation of propane over Pt-SBA-15: effect of Pt particle size. Catal Commun 9(5):747–750CrossRefGoogle Scholar
  4. 4.
    Pakharukova VP, Pakharukov IY, Bukhtiyarov VI, Parmon VN (2014) Alumina-supported platinum catalysts: local atomic structure and catalytic activity for complete methane oxidation. Appl Catal A 486:12–18CrossRefGoogle Scholar
  5. 5.
    Zhao H, Song H, Chou L (2013) Synthesis and catalytic application in isobutane dehydrogenation of the mesoporous chromia/alumina catalysts based on a metal–organic framework. Microporous Mesoporous Mater 181:182–191CrossRefGoogle Scholar
  6. 6.
    Ren Y, Wang J, Hua W, Yue Y, Gao Z (2012) Ga2O3/HZSM-48 for dehydrogenation of propane: effect of acidity and pore geometry of support. J Ind Eng Chem 18(2):731–736CrossRefGoogle Scholar
  7. 7.
    Zangeneh FT, Taeb A, Gholivand K, Sahebdelfar S (2015) The effect of mixed HCl–KCl competitive adsorbate on Pt adsorption and catalytic properties of Pt–Sn/Al2O3 catalysts in propane dehydrogenation. Appl Surf Sci 357:172–178CrossRefGoogle Scholar
  8. 8.
    Duan Y, Zhou Y, Zhang Y, Sheng X, Xue M (2011) Effect of sodium addition to PtSn/AlSBA-15 on the catalytic properties in propane dehydrogenation. Catal Lett 141(1):120–127CrossRefGoogle Scholar
  9. 9.
    Okada Y, Imagawa K, Asaoka S (2001) Isobutane dehydrogenation over unimodal porous catalyst (part 1) effect of pore distribution of Sn-Pt/ZnO/Al2O3 catalyst on dehydrogenation, activity, selectivity, and deactivation rate. J Jpn Petrol Inst 44(5):277–285CrossRefGoogle Scholar
  10. 10.
    Kumar MS, Holmen A, Chen D (2009) The influence of pore geometry of Pt containing ZSM-5, beta and SBA-15 catalysts on dehydrogenation of propane. Microporous Mesoporous Mater 126(1–2):152–158CrossRefGoogle Scholar
  11. 11.
    Karakoulia SA, Triantafyllidis KS, Tsilomelekis G, Boghosian S, Lemonidou AA (2009) Propane oxidative dehydrogenation over vanadia catalysts supported on mesoporous silicas with varying pore structure and size. Catal Today 141(3–4):245–253CrossRefGoogle Scholar
  12. 12.
    Farsi M, Jahanmiri A, Rahimpour MR (2013) Steady state modeling and simulation of the Oleflex process for isobutane dehydrogenation considering reaction network. Asia-Pac J Chem Eng 8(6):862–869CrossRefGoogle Scholar
  13. 13.
    STAR DEHYDROGENATION PROCESS FOR PBA (1994) Erdol Kohle Erdgas Petrochem 47(9):316–316Google Scholar
  14. 14.
    Xu Z, Yu J, Jaroniec M (2015) Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl Catal B 163:306–312CrossRefGoogle Scholar
  15. 15.
    Chao CS, Li YD, Liao TW, Hung TC, Luo MF (2014) Decomposition of methanol on partially alumina-encapsulated Pt nanoclusters supported on thin film Al2O3/NiAl(100). Appl Surf Sci 311:763–769CrossRefGoogle Scholar
  16. 16.
    Dacquin J-P, Dhainaut J, Duprez D, Royer S, Lee AF, Wilson K (2009) An efficient route to highly organized, tunable macroporous-mesoporous alumina. J Am Chem Soc 131:12896–12897CrossRefGoogle Scholar
  17. 17.
    Dunphy DR, Sheth PH, Garcia FL, Brinker CJ (2015) Enlarged pore size in mesoporous silica films templated by pluronic F127: use of poloxamer mixtures and increased template/SiO2 ratios in materials synthesized by evaporation-induced self-assembly. Chem Mater 27(1):75–84CrossRefGoogle Scholar
  18. 18.
    Grant SM, Jaroniec M (2012) Effect of cosolvent organic molecules on the adsorption and structural properties of soft-templated ordered mesoporous alumina. J Colloid Interface Sci 367(1):129–134CrossRefGoogle Scholar
  19. 19.
    Li Y, Xu R, Couderc S, Bloor DM, Holzwarth JF, Wyn-Jones E (2001) Binding of tetradecyltrimethylammonium bromide to the ABA block copolymer Pluronic F127 (EO97 PO69 EO97): electromotive Force, microcalorimetry, and light scattering studies. Langmuir 17(19):5742–5747CrossRefGoogle Scholar
  20. 20.
    Jansson J, Schillén K, Nilsson M, Söderman O, Fritz G, Bergmann A, Glatter O (2005) Small-angle X-ray scattering, light scattering, and NMR study of PEO–PPO–PEO triblock copolymer/cationic surfactant complexes in aqueous solution. J Phys Chem B 109(15):7073–7083CrossRefGoogle Scholar
  21. 21.
    Poyraz AS, Albayrak C, Dag Ö (2008) The effect of cationic surfactant and some organic/inorganic additives on the morphology of mesostructured silica templated by pluronics. Microporous Mesoporous Mater 115(3):548–555CrossRefGoogle Scholar
  22. 22.
    Cai W, Yu J, Anand C, Vinu A, Jaroniec M (2011) Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties. Chem Mater 23(5):1147–1157CrossRefGoogle Scholar
  23. 23.
    Khalil KMS (2008) Formation of mesoporous alumina via hydrolysis of modified aluminum isopropoxide in presence of CTAB cationic surfactant. Appl Surf Sci 255:2874–2878CrossRefGoogle Scholar
  24. 24.
    Yuan Q, Yin A-X, Luo C, Sun L-D, Zhang Y-W, Duan W-T, Liu H-C, Yan C-H (2008) Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability. J Am Chem Soc 130(11):3465–3472CrossRefGoogle Scholar
  25. 25.
    Sing KSW, Everett DH, HAUL RAW, MOSCOU L, PIEROTTI RA, ROUQUEROL J, SIEMIENIEWSKA T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619CrossRefGoogle Scholar
  26. 26.
    Yue MB, Jiao WQ, Wang YM, He M-Y (2010) CTAB-directed synthesis of mesoporous gamma-alumina promoted by hydroxy polyacids. Microporous Mesoporous Mater 132(1–2):226–231CrossRefGoogle Scholar
  27. 27.
    Vaudry F, Khodabandeh S, Davis ME (1996) Synthesis of pure alumina mesoporous materials. Chem Mater 8:1451–1464CrossRefGoogle Scholar
  28. 28.
    Songbo HE, Yulong L, Wenjun BI, Xu Y, Xin R, Chenglin S (2010) Effect of K promoter on the performance of Pt-Sn-K/gamma-Al2O3 catalyst for n-hexadecane dehydrogenation. Chin J Catal 31(4):435–440Google Scholar
  29. 29.
    Oliviero L, Vimont A, Lavalley JC, Sarria FR, Gaillard M, Mauge F (2005) 2,6-Dimethylpyridine as a probe of the strength of Bronsted acid sites: study on zeolites. application to alumina. Phys Chem Chem Phys 7(8):1861–1869CrossRefGoogle Scholar
  30. 30.
    Turek AM, Wachs IE, DeCanio E (1992) Acidic properties of alumina-supported metal oxide catalysts: an infrared spectroscopy study. J Phys Chem 96(12):5000–5007CrossRefGoogle Scholar
  31. 31.
    Contreras JL, Gomez G, Zeifert B, Salmones J, Vazquez T, Fuentes GA, Navarrete J, Nuno L (2015) Synthesis of Pt/Al2O3 catalyst using mesoporous alumina prepared with a cationic surfactant. Catal Today 250:72–86CrossRefGoogle Scholar
  32. 32.
    Garcia T, Agouram S, Taylor SH, Morgan D, Dejoz A, Vázquez I, Solsona B (2015) Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: influence of the order of impregnation. Catal Today 254:12–20CrossRefGoogle Scholar
  33. 33.
    McNamara JM, Jackson SD, Lennon D (2003) Butane dehydrogenation over Pt/alumina: activation, deactivation and the generation of selectivity. Catal Today 81(4):583–587CrossRefGoogle Scholar
  34. 34.
    Ajayi BP, Jermy BR, Ogunronbi KE, Abussaud BA, Al-Khattaf S (2013) n-Butane dehydrogenation over mono and bimetallic MCM-41 catalysts under oxygen free atmosphere. Catal Today 204:189–196CrossRefGoogle Scholar
  35. 35.
    Musselwhite N, Na K, Sabyrov K, Aayogu S, Somorjai GA (2015) Mesoporous aluminosilicate catalysts for the selective isomerization of n-Hexane: the roles of surface acidity and platinum metal. J Am Chem Soc 137(32):10231–10237CrossRefGoogle Scholar
  36. 36.
    Gayubo AG, Llorens FJ, Cepeda EA, Olazar M, Bilbao J (1997) Kinetic modelling for selective deactivation in the skeletal isomerization of n-butenes. Chem Eng Sci 52(16):2829–2835CrossRefGoogle Scholar
  37. 37.
    Pines H, Haag WO (1960) Alumina: catalyst and support. I. alumina, its intrinsic acidity and catalytic activity1. J Am Chem Soc 82(10):2471–2483CrossRefGoogle Scholar
  38. 38.
    Rashidi M, Nikazar M, Rahmani M, Mohamadghasemi Z (2015) Kinetic modeling of simultaneous dehydrogenation of propane and isobutane on Pt-Sn-K/Al2O3 catalyst. Chem Eng Res Des 95:239–247CrossRefGoogle Scholar
  39. 39.
    Cortright RD, Levin PE, Dumesic JA (1998) Kinetic studies of isobutane dehydrogenation and isobutene hydrogenation over Pt/Sn-based catalysts. Ind Eng Chem Res 37(5):1717–1723CrossRefGoogle Scholar
  40. 40.
    Cortright RD, Dumesic JA (1994) Microcalorimetric, spectroscopic, and kinetic-studies of silica-supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J Catal 148(2):771–778CrossRefGoogle Scholar
  41. 41.
    Wang G, Z-t Chen, X-y Lan, Wang W, C-m Xu, J-s Gao (2011) Restricted diffusion of residual molecules in catalyst pores under reactive conditions. Chem Eng Sci 66(6):1200–1211CrossRefGoogle Scholar
  42. 42.
    Lamond TG, Metcalfe JE, Walker PL (1965) 6Å molecular sieve properties of saran-type carbons. Carbon 3(1):59–63CrossRefGoogle Scholar
  43. 43.
    Flanigen EM, Bennett JM, Grose RW, Cohen JP, Patton RL, Kirchner RM, Smith JV (1978) Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 271(5645):512–516CrossRefGoogle Scholar
  44. 44.
    Yu YX, Gao GH (2000) Lennard-Jones chain model for self-diffusion of n-alkanes. Int J Thermophys 21(1):57–70CrossRefGoogle Scholar
  45. 45.
    Ogonowski J, Skrzynska E (2008) Deactivation of VMgOx catalysts by coke in the process of isobutane dehydrogenation with carbon dioxide. Catal Lett 121(3–4):234–240CrossRefGoogle Scholar
  46. 46.
    Tavassolirizi Z, Shams K, Omidkhah MR (2015) Platinum recovery from model media and a Pt–Sn/alumina spent catalyst extract using corn husk-based adsorbent. J Ind Eng Chem 23:119–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  2. 2.University of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Catalytic Processes and Materials, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations